@ Advanced Card Systems Ltd.
Card & Reader Technologies

ACR89U-A2

Application Programming Interface V1.00

Subject to change without prior notice info@acs.com.hk

www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Table of Contents

g IO TR 11 o Yo ¥ o3 i oY o U 5
1.1. Scope and Limitation ... 5
1.2. Y =T (=T (o= T 5
2.0. Compiler Independent Data TYPeS........cccuvrrrrrrrmmmimmrmmmsssssssssssssssssssssssssssssssssssssssnnn 6
3.0. Smart Card APl FUNCLIONSccuuiiiiieciiirrecirsrre s s rme s e ss s s rss s s s s mnn s s e nma s sennnnns 7
3.1. Firmware VEersion RECOIScoooeiiiieeei ettt e e e e e s 7
3.1.1. Hardware Code: HW-AA-BB-CC ...t 7
3.1.2. Production Firmware Code: XYY ...ttt 7
3.2. [F=) = IS (0 [o1 10 = 7
3.2.1. SCARD _MSG _TYPE ...ttt ettt e e e e e e e e et e e e e e e e e annraaeeeas 7
3.3. FUNCHIONS ettt e e e e e e e et e e e e e e e e ee e e e e e eeeanaaanns 8
3.3.1. SCard_Manager MSg RECEIVE.........ccuuiiiiiiee ettt 8
3.3.2. SCard_Manager _Select Card...........cccuuiiiiiii i 8
3.3.3. SCard_Manager CardONcooiiiiiiiiiiieiee et e e e e 9
3.3.4. SCard_Manager _CardOff..........oooiiiiiiiiiiee e e 9
3.3.5. SCard_Manager_SendBIOCKoo i 10
4.0. Reader APl FUNCLIONSoiiiieiiiiiiii it rrrmss s rems s s emss s s smss s s s s s s s s mnsa s snemnnans 11
4.1. Battery AP FUNCHONScooiiiii e 11
411 D F=) = IS (0 (o1 (0 (=R 11
4.1.2. FUNCHIONS ..ot e e e e et e e e e e e e e e aaaaaaes 11
4.2. BUZZEr APL FUNCLIONSottt et et e e e e e et e e e e e e eeeeaes 13
4.2.1. Data STIUCLUIES ...ttt ee e e e e e eeeeeeeeeeseneesseeenennnnnes 13
4.2.2. FUNCHIONS ..ot e e e e et e e e e e e e e e aaaaaaes 13
4.3. N1/ oT=To I o B o U g e 1 o] o < RPN 15
4.31. D F=) = IS (0 (o1 (0 (=R 15
4.3.2. [ET0 Vo3 (o] 1= 17
4.4, EEPROM API FUNCHONSceeeee et e e e e e e e e eeeaaa 19
4.41. Data STTUCLUMES ... e e e e e e e e e e e e 19
4.4.2. [ET0 Vo3 (o] 1= 19
4.5, Real-time Clock APl FUNGHONSooveie e e 21
4.51. D] e S (0 [o3 (U <Y TPt 21
4.5.2. FUNCHIONS ..t e e e e e e et e e e e e e e e aaaaaans 21
4.6. (IO B Y o B 0T Ve [T o = IRt 25
4.6.1. D] e S (0 [o3 (U <Y TPt 25
4.6.2. FUNCHIONS ..ot e e e e e et e e e e e e e e aaaaaans 25
4.7. Serial FIash API FUNCLONSuuuicc e nnnnnas 30
4.71. Data STTUCKUMES ... e e e e e e e e e e e 30
4.7.2. [ET0 Vo3 (o] 1= 30
4.8. RSV Y AN o I T Tod (o] o [N 32
4.8.1. D F=) = IS (0 (o1 10 (=R 32
4.8.2. [ET0 Vo3 (o] 1= 33
4.9, Miscellaneous I/O API FUNCLONS..........uuiiiiieeeeieieeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeseeeeeeeeseeeeennees 36
4.9.1. D E] e S (0 [o3 (U <Y SRRt 36
4.9.2. FUNCHIONS ..ot e e e e e et e e e e e e e e aaaaaans 37
5.0. RF Card API Functions (only for ACR89-CL version)cccccccemrrrrininncsnsnnnnnnnen 40
5.1. (D F=) = IS (0 [o1 (0] (= 40
5.2. [T Te3 (o] 1= 40
5.2.1. L LS (1T o TS 40
5.2.2. LA = 1= o 2SR 40
6.0. FreeRTOS API FUNCLIONScoceueiiiiiiiireeci e rrre s s s e s s s s s r e n s s e e 41
6.1. Task Creationcoooeiiiiiii 41
6.1.1. XTASKHANAIE ... et e e e e et e e e e eeeane 41
Page 2 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

6.1.2. XTASKCIEALEeiie ettt e 41
6.1.3 VTASKDEIETE ... e 42
6.2. LI TS S O 2o | PR 43
6.2.1. VTASKDEIAY ... e 43
6.2.2. VTaSKDelayUNntiloooiiiii e e 43
6.2.3. UXTASKPTIOMEYGEL ... 44
6.2.4. VTASKPIIOMEYSEL ... e e 45
6.2.5. AV =53 €S 101 o1 Lo PSSR 46
6.2.6. VTASKRESUME ... e 47
6.3. LI TS S = PR 48
6.3.1. xTaskGetCurrentTaskHandIecoooiiiiiiiiii e 48
6.3.2. XTASKGELTICKCOUNL......ciiii e et 48
6.3.3. XTaskGetSchedulerStateooi i 48
6.3.4. UXTasSkGEetNUMDErOFTASKSc.oiuiiiiiiiiiie et s 48
6.4. (G4 g T I O o 011 o] RO RPTR 49
6.4.1. 1221 1 = I SRR 49
6.4.2. taSKENTER_CRITICALooiiiiiiie ettt e e et esntee e et e e e e st e e e s 49
6.4.3. tASKEXIT_CRITICAL ..ottt ettt e et e e et e e e et e e e e ntee e e enneas 49
6.4.4. VTaSKSUSPENAIL ...ttt e e e e e e e e e s e e e e e e e e e aennnee 49
6.4.5. XTASKRESUMEAIL ... nanan 50
6.5. QUEUE MaANAGEMIENTt e e e 51
6.5.1. UXQUEUEMESSAGESWAIINGeeiiiiiiiieiiiiii e 51
6.5.2. XQUEUECTEALE ..ottt et e e ettt e e e et e e e e nbe e e e e nnte e e e enteeeeenneeas 51
6.5.3. VQUEUEDEIBTE ...t et e e 52
6.5.4. XQUEUESENG ...ttt et e ettt e e et e e e e nbe e e e e nnte e e e e nteeeeenneeas 52
6.5.5. XQUEUESENATOBACKeiiiiiiiiie et e e e et e e e e e neeas 53
6.5.6. XQUEUESENATOTOFTONT ...t e e e e e e e 55
6.5.7. XQUEUERECEIVE. ...ttt e e e e e e e e e e e e e e nnnee 56
6.5.8. XQUEBUEPEEK ...ttt et e e e e e e e e e e e e e e e e e e nnnee 58
6.6. SeMAPNOrE/MULEXES ...ttt e e e e e e e e e e e e e e neeeeaaaeean 60
6.6.1. vSemaphoreCreateBiNary..... ... 60
6.6.2. xSemaphoreCreateCoUNtINGocuiii it 60
6.6.3. XSemMaphoreCreateMULEXuuiiiiiiiiiiiiee e e e e e e e e e annes 61
6.6.4. xSemaphoreCreateRecUrSiVEMULEXeeiiiiiiiiiiiiieeie e 62
6.6.5. XSEMAPNOIETAKEuiiiiiiie et e e e e e e e e e e e e s e e e e aaeeeaennnes 63
6.6.6. XSemMaphoreTaKERECUISIVE........uuiiiiiiii et e e e e e e e e e nees 64
6.6.7. XSEMAPNOIEGIVEcuviiiiiie e ettt e e e e e e e e e e e et e e e e e e e s s senanbaeeaaaeeeaannnes 65
6.6.8. XSemMaphOreGIVERECUISIVEuiiiiiiiiiiiiiiiiee et a e e e e aaees 66
6.7. SOfWANE TIMEIS ... s s an s anannnnnnnnnnnnnnnnnnnnnnnnnn 69
6.7.1. DI T=T (O] (== (=R 69
6.7.2. XTIMErISTIMEIACHIVE ... 71
6.7.3. DI =TS = o R 72
6.7.4. D 141 €5 o] o PSSR 72
6.7.5. XTIMErChangEPErIOQccoi it e e e e e e e e e e e seannes 73
6.7.6. XTIMEIDEIETE ... e e e 74
6.7.7. XTIMEIRESEL ... e e e e e e e e e 74
6.7.8. PVTIMErGetTIMENID....... . a e e e eeaaaeeean 76

List of Figures
Figure 1 : Compiler Independent Data TYPESuuuiiiiiiiiiiiiiieee e e e a e e 6

Page 3 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

List of Tables

Table 1 : SCARD _MSG_TYPE Data StrUCIUIEuvviiiiieiiceieeee ettt 8
Table 2 : Buzzer_ ScriptDataType Data StruCture ... 13
Table 3 : KeyStatusEnumType Data StrUCIUre.............eeiiiiii i 15
Table 4 : KeylnputEnumType Data StruCtUre............ooiiiiiiii e 16
Table 5 : Key MessageDataType Data Structurecooooviiiiiiiii i 17
Table 6 : SFlash_EraseBlockType Data StruCturecoooiiiiiiiei i 30
Table 7 : ParityEnumType Data StruCtUre...........oooiiiii e 32
Table 8 : RS232 ParamDataType Data StruCIUrecceoiiiiiiiiiii e 33
Table 9 : I0_VirtualNameType Data StruCtUre.............eiiiii e 36
Table 10 : IO_ActivelnactiveStateType Data StruCtUre...........ccvveeeiiiiiiiceeee e 37

Page 4 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

1.0.Introduction

The ACR89U-A2 terminal is equipped with 32-bit CPU running the embedded Free RT Operating
System (FreeRTOS) Kernel. FreeRTOS kernel is a scalable real-time kernel designed specifically for
small, embedded system. It is open source, portable, free to download and free to deploy software. It
can be used in commercial application without any requirement to expose your proprietary source
code. It has a very portable code structure predominantly written in C language.

This document provides the APl (Application Programming Interface) commands developed
standalone application program specifically for ACR89U. Application software developers can make
use of these APlIs to develop their smart-card related application.

1.1. Scope and Limitation

This API document provides a detailed guide on implementing commands for the smart card reader
keys and displays, as well as the FreeRTOS feature in ACR89.

1.2. Reference

For the details about the FreeRTOS software environment, please visit: http://www.freertos.org/

Page 5 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

2.0.Compiler Independent Data Types

Data Type Size Effective Range of a Number
UINT8 1byte 0 to 255
UINT16 2bytes 0 to 65535
UINT32 4bytes 0 to 4294967295
UINT64 8bytes 0 to 18446744073709551615
INT8 1byte -128 to 127
INT16 2bytes -32768 to 32767
INT32 4bytes -2147483648 to 2147483647
INT64 8bytes -9223372036854775808 to 9223372036854775807
REAL32 4bytes 1.175e-38 to 3.403e+38 (normalized number)
REAL6G4 8bytes 2.225e-308 to 1.798e+308 (normalized number)
BOOLEAN 1byte TRUE/FALSE
UCHAR 1byte 0 to 255
SCHAR 1byte -128 to 127

Figure 1: Compiler Independent Data Types

Handling of 64-bits integer data type constants requires the suffix LL or Il (INT64 type) or ULL or ull
(UINT64 type). If this suffix is not present, a warning is assumed, since the compiler may not be able
to recognize long-type constants as such.

Example: INT64 Il_val;
ll_val = 0x1234567812345678;
e Warning: Integer constant is too large for “long” type
LI_val = 0x1234567812345678LL;
e OK

Page 6 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

3.0.Smart Card API Functions

3.1. Firmware Version Records
e Kiwi2012-07-13 v1.3
e HW-D2-02-00 FreeRTOS V7.0.1

3.1.1. Hardware Code: HW-AA-BB-CC
Where:
e AA: Large version
o D1=ACR89V1-V3 PCBA
o D2 =ACR89 V4-V5 PCBA
e BB : Configuration
o 01=ACR89U-A1 (Basic)
o 02 = ACRB89U-A2 (Contactless with FeliCa Support)
o 03 = ACR89U-B1 (Fingerprint Swipe)
o 04 = ACR89U-A3 (Contactless)
o 05 =ACR89U-A4 (Bluetooth)

e CC : Small version

3.1.2. Production Firmware Code: XYYY
e X: Configuration
e A =ACR89U (Standard)
e B =ACR89U-CL (Contactless)
e C =ACR89U-FP (Fingerprint)
e YYY :Released Version Code

3.2. Data Structures

3.21. SCARD_MSG_TYPE

[SCard Msg.h]

typedef struct

{
UINTS8 ucMessage:5;
UINTS8 ucData:3;

} SCARD MSG TYPE;

#define SCARD MSG_UNKNOWN 0x00

#define SCARD MSG CARDINSERTED 0x01
#define SCARD MSG CARDREMOVED 0x02

Used by Scard_Manager_Msg_Receive.

ACR89U-A2 - Application Programming Interface

Version 1.00

Page 7 of 76

info@acs.com.hk
www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Data Member Value Description

Smart card message type:
ucMessage Bit field | 0 - SCARD_MSG_UNKNOWN (undefined message)
Oto 2 1 - SCARD_MSG_CARDINSERTED (card inserted into slot)
2 - SCARD_MSG_CARDREMOVED (card removed from slot)
Bit field Index of smart card slot where the message comes from:
ucData 0or 1 0 - 1st slot
1 - 2nd slot

Table 1: SCARD _MSG_TYPE Data Structure

3.3. Functions

3.3.1. SCard_Manager_Msg_Receive

This function receives the smart card message and waits until the smart card message is received
within the limit of TimeOut.

[SCard Manager.h]
BOOLEAN SCard Manager Msg Receive (

SCARD MSG_TYPE *pMsgBuffer,
portTickType TimeOut);

Parameters:
pMsgBuffer [out] Storage space of smart card message to output.

TimeOut [in] Wait time of receiving smart card message [0 - portMAX_DELAY milliseconds].
Specifying the block time as portMAX_DELAY will cause the task to block indefinitely
(without a timeout).

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully waiting for the smart
card message.

3.3.2. SCard_Manager_Select Card

This function selects the active working card slot.

[SCard Manager.h]

void SCard Manager SelectCard (
UINT8 ucCard);

Parameters:

ucCard [in] Index of active working card slot [0-4].

Page 8 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

3.3.3. SCard_Manager_CardOn
This function powers on the active working card slot.

[SCard Manager.h]

UINT8 SCard Manager CardOn (
BOOLEAN bAutoVoltage,
UINTS8 ucVoltage,
UCHAR *pucReceiveBuffer,
UINT16 “*pusReceiveSize);

Parameters:

bAutoVoltage [in] TRUE -- automatic detect card working voltage, FALSE -- use fixed card
working voltage.

ucVoltage [in] If bAutoVoltage is FALSE, ucVoltage set a fixed working voltage of card,

[CvCC_1_8_VOLT--1.8V,CVCC_3_VOLT -3V, CVCC_5_VOLT -5V].

pucReceiveBuffer [out] Storage space of ATR data to output.

pusReceiveSize [out] Size of output ATR data [byte].

Returns:

UINT8 This function returns the state of operation result,
[SLOT_NO_ERROR -- successful,
SLOTERROR_BAD LENGTH -- data length error,
SLOTERROR_BAD_SLOT -- invalid working card slot,
SLOTERROR_ICC_MUTE -- card response time out,
SLOTERROR_XFR_PARITY_ERROR -- data parity error,
SLOTERROR_XFR_OVERRUN -- data transfer overrun,
SLOTERROR_HW_ERROR -- hardware error,
SLOTERROR_BAD_ATR_TS -- TS of ATR is error].

3.3.4. SCard_Manager_CardOff
This function powers off the active working card slot.

[SCard Manager.h]
BOOLEAN SCard Manager CardOff (
void);

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully turning off the power
of the active working card slot.

Page 9 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

3.3.5. SCard_Manager_SendBlock
This function sends APDU commands to smart card and receives data from card.

[SCard Manager.h]

UINT8 SCard Manager SendBlock (
UCHAR *pucCmdBlockBuffer,
UCHAR *pucResBlockBuffer,
UINT16 *pusBufferSize);

Parameters:
pucCmdBlockBuffer [in] Storage space of input APDU sent to card.

pucResBlockBuffer [out] Storage space of output data from card.

pusBufferSize [in&out] Storage space of input APDU size and output data size [byte].
Returns:
UINT8 This function returns the state of operation result,

[SLOT_NO_ERROR -- successful,

SLOTERROR _BAD LENGTH -- data length error,
SLOTERROR_ICC_MUTE -- card response time out,

SLOTERROR _XFR_PARITY_ERROR -- data parity error,
SLOTERROR_HW_ERROR -- hardware error,
SLOTERROR_ICC_CLASS NOT_SUPPORTED -- functional error,
SLOTERROR_PROCEDURE_BYTE_CONFLICT -- procedure byte error].

Page 10 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.0.Reader API Functions
4.1. Battery API Functions

4.1.1. Data Structures
4.1.2. Functions

4.1.2.1. Battery_GetMilliVolt

This function gets the battery voltage.
[Battery.h]

UINT32 Battery GetMillivVolt (
void);

Returns:

UINT32 This function returns the value of battery voltage [mV].

41.2.2. Battery_GetPercent

This function gets the percentage of battery energy volume.
[Battery.h]

UINT8 Battery GetPercent (
void);

Returns:

UINT8 This function returns the value of the percentage of battery energy volume [0-100].

41.2.3. Battery_WaitChargeStateChangeMsg

This function waits for the battery charge status to change and waits within the limit of TimeOut.
[Battery.h]

BOOLEAN Battery WaitChargeStateChangeMsg (

portTickType TimeOut,
BOOLEAN *pbChargeState);

Parameters:

TimeOut [in] Wait time of charge status changes [0 - portMAX_DELAY milliseconds].
Specifying the block time as portMAX _DELAY will cause the task to block
indefinitely (without a timeout).

pbChargeState [out] Storage space of charge status to output. If this function returns TRUE,
*pbChargeState outputs new status; if this function returns FALSE,
*pbCharge State outputs current status.

Page 11 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies
Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully waiting for battery
charge status change message.

Page 12 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.2. Buzzer API Functions
421. Data Structures

4.21.1. Buzzer_ScriptDataType
[Buzzer Msg.h]

struct Buzzer Script
{
UINT8 BuzzerTime: 7;
UINT8 BuzzerOn: 1;
}i
typedef struct Buzzer Script Buzzer ScriptDataType;

Used by Buzzer Msg_SendScript.

Example:

const Buzzer ScriptDataType Buzzer SampleScriptl [] =
{

{1, TRUE}, // buzzer on 100ms

{2, FALSE}, // buzzer off 200ms

{3, TRUE}, // buzzer on 300ms

{0, FALSE} // mandatory script end

Data Member Value Description
) Bit field The time of a buzzer on/off state:
BuzzerTime . .
0to 127 This value represents a multiple of 100 ms.
Th ff state of :
Buzzer0n stield | e
TRUEor FALSE 1 £ ALSE — buzzer off

Table 2: Buzzer_ ScriptDataType Data Structure

4.2.2. Functions

4.2.21. Buzzer_Msg_SendScript

This function sends buzzer script to buzzer driver.

[Buzzer Msg.h]

BOOLEAN Buzzer Msg SendScript (
Buzzer ScriptDataType const* const Script);

Parameters:

Script [in] Storage space of the script data. If this parameter is a local variable, it should be
the data type of “static const” for compiling safety. Us global const variable for this
parameter is more preferred.

Page 13 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Returns:
BOOLEAN This function returns TRUE/FALSE of the state of successfully sending buzzer script.

4.2.2.2. Buzzer_Msg_IsPlaying
This function gets the buzzer status whether it is playing scripts.

[Buzzer Msg.h]

BOOLEAN Buzzer Msg IsPlaying (
void);

Returns:
BOOLEAN This function returns TRUE/FALSE of the state that the buzzer is playing scripts.

Page 14 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.3. Keypad API Functions
4.3.1. Data Structures

4.31.1. KeyStatusEnumType
[Key Port.h]

enum KeyStatus
{
Key release = 0,
Key PressDown = 1,
Key shortPress = 2,
Key longPress = 3
}i
typedef enum KeyStatus KeyStatusEnumType;

Used by Key MessageDataType to transmit the status of key action.

Data Member Value Description

Key release 0 Key released after long press
Key_ PressDown 1 Key pressed down after no key is pressed
Key_shortPress 2 Key released shorter than long press threshold
Key longPress 3 L(:gopr)]rdess down longer than long press threshold every

Table 3: KeyStatusEnumType Data Structure

4.3.1.2. KeylnputEnumType
[Key Port.h]

enum KeyInput
{

Key noKeyInput = O,

Key ClearKeyInput =
Key NumOKeyInput = 2,
Key RightKeyInput = 4,
Key Num7KeyInput = 6
Key Num8KeyInput = 7,
Key Num9KeyInput = 8
Key LeftKeyInput = 9,
Key Num4KeyInput = 11,
Key NumbKeyInput = 12,
Key Numé6KeyInput = 13,
Key DownKeyInput = 14,
Key NumlKeyInput = 16,
Key Num2KeyInput = 17,
Key Num3KeyInput = 18,
Key UpKeyInput = 19,

Key FlKeyInput = 21,

Key F2KeyInput = 22,

Key F3KeyInput =
Key F4KeyInput = 24,

|
N
w
~

Page 15 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Key PowerKeyInput = 26

}i

typedef enum KeyInput KeyInputEnumType;

Used by Key MessageDataType and Key Msg GetKeyPressing to transmit the name of key.

4.3.1.3.
[Key Msg.h]

Data Member Value Description
Key_noKeylnput 0 No key
Key_ClearKeylnput 1 Clear key
Key NumOKeylnput 2 Numeric 0 key
Key_ RightKeylnput 4 Direction right key
Key Num7Keylnput 6 Numeric 7 key
Key Num8Keylnput 7 Numeric 8 key
Key Num9Keylnput 8 Numeric 9 key
Key_LeftKeylnput 9 Direction left key
Key Num4Keylnput 11 Numeric 4 key
Key Num5Keylnput 12 Numeric 5 key
Key Num6Keylnput 13 Numeric 6 key
Key DownKeylnput 14 Direction down key
Key Num1Keylnput 16 Numeric 1 key
Key Num2Keylnput 17 Numeric 2 key
Key Num3Keylnput 18 Numeric 3 key
Key UpKeylnput 19 Direction up key
Key_ F1Keylnput 21 Function F1 key
Key F2Keylnput 22 Function F2 key
Key F3Keylnput 23 Function F3 key
Key F4Keylnput 24 Function F4 key
Key_ PowerKeylnput 26 Enter key/Power switch

Table 4: KeylnputEnumType Data Structure

Key_MessageDataType

struct Key Message

{

}i

KeyStatusEnumType
KeyInputEnumType

eKeyStatus;
eInputKey;

typedef struct Key Message Key MessageDataType;

Used by Key Msg_ReceiveKey.

ACR89U-A2 - Application Programming Interface

Version 1.00

Page 16 of 76

info@acs.com.hk
www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Data Member Value Description
eKeyStatus KeyStatusEnumType Status of key action
elnputKey KeylnputEnumType The name of key

Table 5: Key MessageDataType Data Structure

4.3.2. Functions

43.21. Key_Port_IsAnyKeyDown

This function gets the status of whether any key is being pressed down.
[Key Port.h]

BOOLEAN Key Port IsAnyKeyDown (
void);

Returns:
BOOLEAN This function returns TRUE/FALSE of the state that any key is being pressed down.

4.3.2.2. Key_Msg_ReceiveKey

This function waits for the keypad message until it times out and waits until it is received within the
limit of TimeOut.

[Key Msg.h]
BOOLEAN Key Msg ReceiveKey (

Key MessageDataType* Key MsgRecBuffer,
portTickType TimeOut) ;

Parameters:

Key_MsgRecBuffer [out] Storage space of keypad message to output.

TimeOut [in] Waiting time of receiving keypad message.
Returns:
BOOLEAN This function returns TRUE/FALSE of the state of successfully waiting for

keypad message.

4.3.2.3. Key_Msg_GetKeyPressing
This function gets the name of the key that is being pressed down.
[Key Msg.h]

KeyInputEnumType Key Msg GetKeyPressing (
void);

Page 17 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies
Returns:

KeylnputEnumType This function returns the name of the key that is being pressed down.

4.3.2.4. Key_Ctrl_FlushMsgBuffer

This function clears the keypad message buffer. After this function has been called, the function
Key Msg ReceiveKey can only wait for the newly-generated keypad message.

[Key Ctrl.h]

void Key Ctrl FlushMsgBuffer (
void);
4.3.2.5. Key_Ctrl_ScanLock

This function disables the keypad to generate a new message. By default, the keypad generates new
messages.

[Key Ctrl.h]

void Key Ctrl ScanLock (
void);
4.3.2.6. Key_Ctrl_ScanUnlock

This function enables the keypad to generate a new message. By default, the keypad generates new
messages.

[Key Ctrl.h]

void Key Ctrl ScanUnlock (
void);
4.3.2.7. Key_Ctrl_SetLongPressThreshold

This function sets the threshold of duration that has been used to distinguish long or short press of a
key. By default, the threshold of duration is two seconds.

[Key Ctrl.h]

void Key Ctrl SetLongPressThreshold (
UINT8 Seconds);

Parameters:

Seconds [in] Value of threshold duration [sec].

43.2.8. Key_Tim_GetKeyDownTime

This function gets the latest duration of the key being pressed down. When no key is pressed, the
value of the duration is retained.

[Key Tim.h]

UINT16 Key Tim GetKeyDownTime (
void);

Returns:

UINT16 This functions returns latest duration of the key being press down [sec].

Page 18 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.4. EEPROM API Functions
44.1. Data Structures
4.4.2. Functions

44.21. EEPROM_Write

This function writes data into EEPROM. The memory size of EEPROM is 65536 bytes, so the sum of
usAddress and usSize must be less than or equal to 65536.

[EEPROM.h]
BOOLEAN EEPROM_Write (
UINT16 usAddress,

const UINT8 *pucbhata,
UINT16 usSize);

Parameters:
usAddress [in] Start address of destination memory of EEPROM to be written [0-65535].

pucData [in] Storage space of the data to be written into EEPROM.

usSize [in] Size of input data [byte, 1-65535].

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully writing data into
EEPROM.

44.2.2. EEPROM_Read

This function reads data from EEPROM. The memory size of EEPROM is 65536 bytes, so the sum of
usAddress and usSize must be less than or equal to 65536.

[EEPROM.h]
BOOLEAN EEPROM Read (
UINT16 usAddress,

UINT8 *pucDhata,
UINT16 usSize);

Parameters:
usAddress [in] Start address of source memory of EEPROM to be read [0-65535].

pucData [out] Storage space of the data to be read from EEPROM.

usSize [in] Size of output data [byte, 1-65535].

Page 19 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies
Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully reading data from
EEPROM.

Page 20 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.5. Real-time Clock API Functions
451. Data Structures
4.5.2. Functions

4.5.2.1. EXRTC_Write_Ram

This function writes data to the RAM of external RTC. The memory size of external RTC RAM is 238
bytes, so the sum of usAddress and usSize must be less than or equal to 238.

[EXRTC.h]
BOOLEAN EXRTC Write Ram (
UINT16 usAddress,

const UINT8 *pucbhata,
UINT16 usSize);

Parameters:

usAddress [in] Start address of destination memory of external RTC RAM to be written [0-237].

pucData [in] Storage space of the data to be written into external RTC RAM.
usSize [in] Size of input data [byte, 1-238].
Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully writing data into
external RTC RAM.

4.5.2.2. EXRTC_Read Ram

This function reads data from the RAM of external RTC. The memory size of external RTC RAM is
238 bytes, so the sum of usAddress and usSize must be less than or equal to 238.

[EXRTC.h]

BOOLEAN EXRTC Read Ram (
UINT16 usAddress,
UINT8 *pucDhata,
UINT16 usSize);

Parameters:

usAddress [in] Start address of source memory of external RTC RAM to be read [0-237].
pucData [out] Storage space of the data to be read from external RTC RAM.

usSize [in] Size of output data [byte, 1-238].

Page 21 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies
Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully reading data from
external RTC RAM.

45.2.3. EXRTC_Write_Time

This function sets decimal time value to external RTC.
[EXRTC.h]

BOOLEAN EXRTC7WriteiTime(
UINT8 ucHour,
UINT8 ucMinute,
UINT8 ucSecond) ;

Parameters:

ucHour [in] Decimal value of hour [0-23].
ucMinute [in] Decimal value of minute [0-59].
ucSecond [in] Decimal value of second [0-59].
Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully setting time value to
external RTC.

4.5.2.4. EXRTC_Write_TimeBCD

This function sets binary-coded decimal time value to external RTC.

[EXRTC.h]
BOOLEAN EXRTC_Write_TimeBCD (
UINT8 ucHour,

UINT8 ucMinute,
UINT8 ucSecond) ;

Parameters:
ucHour [in] BCD value of hour [0x00h-0x23h].

ucMinute [in] BCD value of minute [0x00h-0x59h].

ucSecond [in] BCD value of second [0x00h-0x59h].

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully setting time value to
external RTC.

Page 22 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.5.2.5. EXRTC_Read_Time

This function reads out time value from external RTC, the format of output data is BCD.
[EXRTC.h]

BOOLEAN EXRTC Read Time (
UINT8 *pucHour,
UINT8 *pucMinute,
UINT8 *pucSecond);

Parameters:
pucHour [out] Storage space of output hour value.
pucMinute [out] Storage space of output minute value.

pucSecond [out] Storage space of output second value.

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully reading out time value
from external RTC.

4.5.2.6. EXRTC_Write_Date

This function sets decimal date value to external RTC.
[EXRTC.h]

BOOLEAN EXRTC Write Date (
UINT8 ucYear,
UINT8 ucMonth,
UINT8 ucWeekday,
UINT8 ucDhay);

Parameters:
ucYear [in] Decimal value of year [0-99].
ucMonth [in] Decimal value of month [1-12].

ucWeekday [in] Decimal value of weekday [0-6].

ucDay [in] Decimal value of day [1-31].

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully setting date value to
external RTC.

Page 23 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.5.2.7. EXRTC_Write_DateBCD

This function sets binary-coded decimal date value to external RTC.
[EXRTC.h]

BOOLEAN EXRTC_Wri te DateBCD (
UINT8 ucYear,
UINT8 ucMonth,
UINT8 ucWeekday,
UINT8 ucDhay);

Parameters:
ucYear [in] BCD value of year [0x00h-0x99h].
ucMonth [in] BCD value of month [0x01h-0x12h].

ucWeekday [in] BCD value of weekday [0x00h-0x06h].

ucDay [in] BCD value of day [0x01h-0x31h].

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully setting date value to
external RTC.

4.5.2.8. EXRTC_Read_Date

This function reads out date value from external RTC. The format of output data is BCD.
[EXRTC.h]

BOOLEAN EXRTC Read Date (
UINT8 *pucYear,
UINT8 *pucMonth,
UINT8 *pucWeekday,
UINT8 *pucDhay);

Parameters:
pucYear [out] Storage space of output year value.
pucMonth [out] Storage space of output month value.

pucWeekday [out] Storage space of output weekday value.

pucDay [out] Storage space of output day value.

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully reading out date value
from external RTC.

Page 24 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.6. LCD API Functions
4.6.1. Data Structures
4.6.2. Functions

4.6.21. LCD_SetCursor

This function sets the cursor position of LCD.
[LCD.h]

BOOLEAN LCD SetCursor (
UINT8 ucLcdRowPosition,
UINT8 ucLcdColumnPosition);

Parameters:
ucLcdRowPosition [in] LCD cursor row position [0 - LCD_MAX_ROW].

ucLcdColumnPosition [in] LCD cursor column position [0 - LCD_MAX_COLUMN].

Returns:
BOOLEAN This function returns TRUE/FALSE of the state of successfully (not out of boundary)
setting the cursor position of LCD.

4.6.2.2. LCD_GetCursor

This function gets the current cursor position of LCD.
[LCD.h]
void LCD GetCursor (

UINT8 *pucLcdRowPosition,
UINT8 *pucLcdColumnPosition);

Parameters:

pucLcdRowPosition [out] Storage space of LCD row position.

pucLcdColumnPosition [out] Storage space of LCD column position.

4.6.2.3. LCD_Display_ASCIIChar

This function displays single ASCII character in LCD.
[LCD.h]
void LCD Display ASCIIChar (

UINT8 ucLcdCharacterToDisplay,
BOOLEAN bSetNextPosCur);

Parameters:
ucLcdCharacterToDisplay [in] ASCII code to display in LCD [0x20h-0x7Eh].

Page 25 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

bSetNextPosCur [in] TRUE -- set cursor to next position after displayed the code,
FALSE -- the cursor remains in the same position.
4.6.2.4. LCD_DisplayASClIMessage

This function displays a string of characters. The three control characters ‘\b’, \r’ and \n’ can be used
in string of characters.

[LCD.h]

void LCD DisplayASCIIMessage (
const UINT8 *LcdMessageToDisplay);

Parameters:

LcdMessageToDisplay [in] Null terminated string of characters to be displayed.

4.6.2.5. LCD_ClearDisplay

This function clears LCD display by mode of ‘whole page’, ‘whole row’ or ‘one character’.
[LCD.h]
void LCD ClearDisplay (

UINT8 index,
UINT8 ucNumber);

Parameters:
Index [in] O -- Clears whole page.
1 -- Clears whole row from the current row of cursor. The number of rows to be
cleared is ucNumber.
2 -- Clears column part of characters (1 character is 6 columns) from current
cursor. The number of columns of characters to be cleared is ucNumber.
ucNumber [in] Number of rows or columns to be cleared.

4.6.2.6. LCD_SetContrast

This function sets the contrast level of LCD.
[LCD.h]

void LCD_SetContrast (
UINT8 contrast level);

Parameters:

contrast_level [in] Level of contrast [0-255]. The default value is 169.

4.6.2.7. LCD_SetBacklight
This function turns on/off the backlight of LCD.
[LCD.h]

void LCD_SetBacklight (
BOOLEAN bTurnOn) ;

Page 26 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Parameters:
bTurnOn [in] TRUE -- Turns on backlight, FALSE -- Turns off backlight.

4.6.2.8. LCD_Display_Cursor

This function displays the vertical cursor in LCD (8 pixels).
[LCD.h]

void LCD Display Cursor (
void);
4.6.2.9. LCD_Clear_Cursor

This function clears the vertical cursor in LCD.
[LCD.h]

void LCD Clear Cursor (
void);
4.6.2.10. LCD_Display_Page

This function displays the whole image in one screen.
[LCD.h]

void LCD Display Page (
UINT8 *pucBitmap);

Parameters:
pucBitmap

[in] A string of bitmap raw data to be displayed [resolution: (LCD_MAX_ROW x 8) x
LCD_MAX_COLUMN].

4.6.2.11. LCD_DisplayGraphic
This function displays icon-like bitmap image at a specified position.
[LCD.h]

void LCD DisplayGraphic (
UINT8 ucLcdRowNumber,
UINT8 ucLcdColumnNumber,
const UINT8 *pucBitMap);

Parameters:

ucLcdRowNumber [in] Number of row of image occupied.
ucLcdColumnNumber [in] Number of column of image occupied.

pucBitMap [in] Array of image data.

Page 27 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.6.2.12. LCD_DisplayOn
This function turns on/off of LCD display.
[LCD.h]

void LCD DisplayOn (
BOOLEAN bTurnOn) ;

Parameters:
bTurnOn [in] TRUE -- Turns on display, FALSE -- Turns off display.

4.6.2.13. LCD_DisplayDecimal

This function displays the decimal number in LCD.
[LCD.h]

void LCD DisplayDecimal (
UINT32 ulDecimal);

Parameters:

ulDecimal [in] Decimal number to be displayed.

4.6.2.14. LCD_DisplayHex

This function displays number in LCD in hexadecimal format.
[LCD.h]
void LCD DisplayHex (

UINTS8 ucDisplay);

Parameters:

ucDisplay [in] Number to be displayed.

4.6.2.15. LCD_DisplayHexN

This function displays number of string in the LCD in hexadecimal format.
[LCD.h]

void LCD DisplayHexN (
const UINT8 *pucDisplay,
UINT8 Number);

Parameters:

pucDisplay [in] Array of hexadecimal number to be displayed.

Number [in] Size of hexadecimal number array [bytes].

Page 28 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.6.2.16. LCD_DisplayFloat

This function displays number in LCD in float format.
[LCD.h]

void LCD DisplayFloat (

UINT32 ulDecimal,
UINT8 Exp);

Parameters:
ulDecimal [in] Number to be displayed (without radix point).
Exp [in] Decimal digits after radix point [0-9].

4.6.2.17. LCD_DrawTitleBox
This function displays title box in LCD.
[LCD.h]

void LCD DrawTitleBox (
const UINT8 *TitleMessage);

Parameters:

TitleMessage [in] Null terminated string of characters [only supported 0x20-0x7E] to be

displayed.

ACR89U-A2 - Application Programming Interface

Version 1.00

Page 29 of 76

info@acs.com.hk
www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.7. Serial Flash API Functions

The memory of the serial flash must be erased first before it is written. Make sure all of the data in the
memory is OxFFh.

4.71. Data Structures

4.71.1. SFlash_EraseBlockType
[SFlash.h]

enum SFlash EraseBlock
{
ERASE 4K = SF_ERASE (4K,
ERASE 64K = SF_ERASE 64K
}i
typedef enum SFlash EraseBlock SFlash EraseBlockType;

#define SF _ERASE 4K 0x20
#define SF ERASE 64K 0xD8

Used by SerialFlash_Erase_Block to set type of size of block memory to erase.

Data Member Value Description
ERASE_4K SF_ERASE_4K 4K bytes block type
ERASE_64K SF_ERASE_64K 64K bytes block type

Table 6: SFlash_EraseBlockType Data Structure

4.7.2. Functions

4.7.21. SerialFlash_ReadDataBytes

This function reads data from serial flash.

[SFlash.h]

void SerialFlash ReadDataBytes (
UINT32 ulAddress,

UINT8* pucReceiveBufferPtr,
UINT32 ulLength);

Parameters:

ulAddress [in] Start address of source memory of serial flash to be read [0x20000h-
Ox7FFFFh].

pucReceiveBufferPtr [out] Storage space of the data to be read from serial flash.

ulLength [in] Size of output data [byte].

Page 30 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.7.2.2. SerialFlash_Erase_Block

This function erases block memory of serial flash.
[SFlash.h]
BOOLEAN SerialFlash Erase Block (

SFlash EraseBlockType BlockType,
UINT32 ulAddress);

Parameters:

BlockType [in] Type of size of block memory to erase, [ERASE_4K -- 4KB block, ERASE_64K --
64KB block].

ulAddress [in] Start address of destination block memory of serial flash to be erased [>=
0x20000h, must be block size aligned].

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully erasing block memory
of serial flash.

4.7.2.3. SerialFlash_WriteDataBytes

This function writes data into serial flash. Before writing data into serial flash, the destination memory
should be erased (make sure the data in the memory is all 0xFFh).

[SFlash.h]
BOOLEAN SerialFlash WriteDataBytes (
UINT32 ulAddress,

const UINT8* pucWriteBufferPtr,
UINT32 ullength);

Parameters:

ulAddress [in] Start address of destination memory of serial flash to be written
[0x20000h-0x7FFFFh].

pucWriteBufferPtr [in] Storage space of data to be written into serial flash.

ulLength [in] Size of input data [byte].
Returns:
BOOLEAN This function returns TRUE/FALSE of the state of successfully writing data

into serial flash.

Page 31 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.8. RS232 API Functions
4.8.1. Data Structures

4.8.1.1. ParityEnumType
[RS232.h]

enum Parity
{
No Parity = 0,
0dd Parity =1,
Even Parity =

|
N

bi
typedef enum Parity ParityEnumType;

Used by RS232 ParamDataType to transmit parity configuration of RS232.

Data Member Value Description
No_Parity 0 RS232 no parity mode
Odd_Parity 1 RS232 odd parity mode
Even_Parity 2 RS232 even parity mode

Table 7: ParityEnumType Data Structure

4.8.1.2. RS232_ParamDataType
[RS232.h]

struct RS232 Parameter
{

UINT32 Baudrate;
ParityEnumType ParityMode;
BOOLEAN SevenOrEightDataBit;
BOOLEAN TwoOrOneStopBit;

}i
typedef struct RS232 Parameter RS232 ParamDataType;

Used by RS232 Config to transmit parameters of RS232 configuration.

Data Member Value Description
This value is baud rate of RS232 (e.g.
Baudrate UINT32 9600 is baud rate of 960 Obps, range

from 400 to 115200)

ParityMode ParityEnumType Parity mode of RS232 configuration

7 or 8 bits data mode:
SevenOrEightDataBit BOOLEAN TRUE - 7-bit data mode
FALSE — 8-bit data mode

Page 32 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Data Member Description

2 or 1 stop bit mode:
TwoOrOneStopBit BOOLEAN TRUE - 2 stop bit mode
FALSE — 1 stop bit mode

Table 8: RS232_ ParamDataType Data Structure

4.8.2. Functions

4.8.2.1. RS232_Config

This function sets the parameters of RS232 port. Before using this function to set parameter, the
RS232 port should be in the state of closed, if not RS232_Config will return false.

[RS232.h]

BOOLEAN RS232 Config (
const RS232 ParamDataType* Param);

Parameters:

Param [in] Storage space of the parameter data.

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully set parameter of

RS232.

4.8.2.2. RS232 OpenPort

This function opens RS232 port. Before using this function, the RS232 port should be in the state of
closed, if not, RS232_OpenPort will return false.

[RS232.h]
BOOLEAN RS232 OpenPort (
UINT32* pulHandle);

Parameters:

pulHandle [out] Storage space of the handle for control RS232 port.

Returns:
BOOLEAN This function returns TRUE/FALSE of the state of successfully open RS232 port.

4.8.2.3. RS232 _ClosePort
This function closes RS232 port.
[RS232.h]

BOOLEAN RS232 ClosePort (
UINT32 ulHandle);

Page 33 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Parameters:

ulHandle [in] The handle value gets from RS232 OpenPort. If the value is not from
RS232_OpenPort, this function will return false.

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully close RS232 port.

4.8.2.4. RS232_ReceivedDataNumber
This function gets the number of bytes received by RS232 port.
[RS232.h]

UINT16 RS232 ReceivedDataNumber (
UINT32 ulHandle);

Parameters:

ulHandle [in] The handle value gets from RS232 OpenPort. If the value is not from
RS8232_OpenPort, this function will return 0.

Returns:

UINT16 This function returns number of bytes received by RS232 port.

4.8.2.5. RS232_Receive

This function gets data that is received by RS232 port. This function waits until data is received within
the limit of TimeOut.

[RS232.h]

BOOLEAN RS232 Receive (
UINT32 ulHandle,
UINT8* pucRecBuf,

UINT16* puslen,
portTickType TimeOut) ;

Parameters:

ulHandle [in] The handle value gets from RS232 OpenPort. If the value is not from
RS232_OpenPort, this function will return false.

pucRecBuf [out] Storage space of the data to be gotten from RS232 port.

pusLen [in&out] Storage space of receive buffer size and output received data size [byte].

TimeOut [in] Waiting time of receiving data from RS232 port.

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully receiving data from
RS232 port.

Page 34 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.8.2.6. RS232_Send
This function sends data to RS232 port.
[RS232.h]
BOOLEAN RS232 Send (
UINT32 ulHandle,

const UINT8* pucSndBuf,
UINT16 uslen);

Parameters:

ulHandle [in] The handle value gets from RS232 OpenPort. If the value is not from
RS232 OpenPort, this function will return false.

pucSndBuf [in] Storage space of the data to be sent to RS232 port.

usLen [in] Size of data to be sent to RS232 port [byte].

Returns:

BOOLEAN This function returns TRUE/FALSE of the state of successfully sending data to
RS232 port.

Page 35 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

4.9. Miscellaneous I/0O API Functions

49.1. Data Structures

49.1.1. 10_VirtualNameType
[10.h]

enum IO VirtualName

{

I0 LEDOOutput = 14,
I0_LED1Output = 15,
I0_LED20utput = 16,
I0 LED3Output =17,
I0 LED4Output = 18,
I0 LED5Output =19,
I0_LED6Output = 20,
IO _LED70utput = 21

}i
typedef enum IO VirtualName IO VirtualNameType;

Used by /0_ReadDigitalOutput and IO_WriteDigitalOutput to set the address of I/0 port to operate.

Data Member Value Description
IO_LEDOOutput 14 Red color of first bi-color LED
I0_LED1Output 15 Green color of first bi-color LED
I0_LED2Output 16 Red color of second bi-color LED
I0_LED3Output 17 Green color of second bi-color LED
I0_LED4Output 18 Red color of third bi-color LED
I0_LED5Output 19 Green color of third bi-color LED
I0_LED6Output 20 Red color of fourth bi-color LED
I0_LED7Output 21 Green color of fourth bi-color LED

Table 9: I0_VirtualNameType Data Structure

4.9.1.2. 10_ActivelnactiveStateType
[10.h]

enum IO ActivelInactiveState

{

IO InactiveState = 0,
IO ActiveState = 1,
IO UndefineState = 2

i
typedef enum IO ActivelInactiveState IO ActivelnactiveStateType;

Used by /I0O_ReadDigitalOutput and 10_WriteDigitalOutput to transmit I/O port logical state.

Page 36 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Data Member ‘ Value Description
IO_InactiveState 0 Logical FALSE

IO_ActiveState 1 Logical TRUE
IO_UndefineState 2 Logical invalid

Table 10: I0_ActivelnactiveStateType Data Structure

4.9.2. Functions

49.21. 10_ReadDigitalOutput
This function gets the value of digital output port corresponding to port name address.
[I0.h]

IO ActivelInactiveStateType IO ReadDigitalOutput (
I0 VirtualNameType Address);

Parameters:

Address [in] Port name address of digital output port to be read.

Returns:

10_ActivelnactiveStateType This function returns value of digital output port [/O_InactiveState --
the port output value is inactive, /O_ActiveState — the port output
value is active].

4.9.2.2. 10_WriteDigitalOutput

This function sets the value of digital output port corresponding to port name address.
[I0.h]

void IO WriteDigitalOutput (

IO ActivelnactiveStateType State,
I0 VirtualNameType Address);

Parameters:

State [in] Value of digital output port to be set [/O_InactiveState -- output value is inactive,
10_ActiveState — output value is active].

Address [in] Port name address of digital output port to be written.

4.9.2.3. 10_WriteLEDOutput

This function sets output value to all LEDs.
[I0.h]

void IO WriteLEDOutput (
UINT8 ucLED);

Page 37 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies
Parameters:

ucLED [in] The value of output on/off of all bi-color LEDs

[bit 0~7 correspond to /O_LEDOOutput ~ 10_LED7Output of
IO ActivelnactiveStateType,

10_LEDOOutput is red color of first LED;
10_LED1Output is green color of first LED;
10_LED2OQutput is red color of second LED;
10_LED3Output is green color of second LED;
10_LED4Output is red color of third LED;
10_LEDSOutput is green color of third LED;
10_LEDG6Output is red color of fourth LED;

10_LED7Output is green color of fourth LED]. The value 1 of a bit outputs active
state; the value 0 of a bit outputs inactive state.

4.9.2.4. 10_ReadLEDOutput

This function gets the output value to all LEDs.
[I0.h]

UINT8 IO ReadLEDOutput (
void);

Returns:
UINTS This function returns the output value to all bi-color LEDs

[bit 0~7 correspond to /O_LEDOOutput ~ 10_LED7Output of
10_Activelnactive State Type;

10_LEDOOutput is red color of first LED; /O_LED1OQutput is green color of first LED;
10_LED2OQutput is red color of second LED;

10_LED3Output is green color of second LED;
10_LED4Output is red color of third LED;
10_LED5Output is green color of third LED;
10_LEDG60Output is red color of fourth LED;

10_LED7Output is green color of fourth LED]. The value 1 of a bit indicates active
state; the value 0 of a bit indicates inactive state.

49.2.5. 10_SystemShutdown
This function switches the entire system off.
[TO.h]

void IO SystemShutdown (
void);

Page 38 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

49.26. 10_SystemSleep
This function puts system to sleep. Pressing any key releases system from sleep.

[IO0.h]

void IO SystemSleep (
void);

49.2.7. 10_SystemRestart
This function restarts the system.
[I0.h]

void IO SystemRestart (
void) ;

49.2.8. 10_GetSystemVersion

This function returns the version information.
[IO0.h]
Const UCHAR*IO GetSystemVersion (

void);

Returns:

const UCHAR* This function returns pointer of version information which is ASCII string with the
end of null character \0’.

Page 39 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

(as) Advanced Grd systems L
5.0.RF Card API Functions (only for ACR89-CL version)

5.1. Data Structures

5.2. Functions

For ACR89-CL version, use SCard_Manager_SelectCard to select RF card, index 0 for RF card slot
and index 1-5 for smart card slots (while non-ACR89-CL version is 0-4). The APDU data function of
RF card slot is compatible with ACR122. SCard Manager CardOn is also used to get ATR.
SCard_Manager_CardOff is a dummy function for RF card slot. SCard_Manager_SendBlock is also
used to send APDU and get response from RF card slot. SCard_Manager_Msg _Receive is also used
to receive RF card insert/remove message until time out (message RF card slot index is 0, while
smart card slot index is 1-2).

521. RFIF_Sleep

This function sets RF interface power down to reduce power consumption. The default state of RF
interface is power on.

[RECard.h]

void RFIF Sleep (
void);

5.2.2. RFIF_Wakeup

This function sets RF interface power up to run contactless card function. The default state of RF
interface is power on.

[RECard.h]

void RFIF WakeUp (
void);

Page 40 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

6.0. FreeRTOS API Functions

The porting of FreeRTOS and ISR handling is contained in the ACR89U-A1 SDK, so there is no need
to use ISR related API functions. For the duration of system tick, the macro portTICK_RATE_MS
in portmacro.h provides the value; e.g. if portTICK_RATE_MS equals to 1, that represents the
unit of type portTickType is 1 millisecond. Also in ACR89U-A2 SDK, FreeRTOS is configured to
use preemption, software timers and not to use co-routines.

For more information about FreeRTOS, please visit: http://www.freertos.org.

6.1. Task Creation

6.1.1. xTaskHandle

This is a data type by which tasks are referenced. For example, a call to xTaskCreate returns (via a
pointer parameter) an xTaskHandle variable that can then be used as a parameter to vTaskDelete to
delete the task.

[task.h]

6.1.2. xTaskCreate

This function creates a new task and adds it to the list of tasks that are ready to run.
[task.h]

portBASE TYPE xTaskCreate (
pdTASK CODE pvTaskCode,
const portCHAR * const pcName,
unsigned portSHORT usStackDepth,
void *pvParameters,
unsigned portBASE TYPE uxPriority,
xTaskHandle *pvCreatedTask

Parameters:

pvTaskCode [in] Pointer to the task entry function. Tasks must be implemented to never return
(i.e. continuous loop).

pcName [in] A descriptive name for the task. This is mainly used to facilitate debugging.
Maximum length is defined by configMAX_TASK _NAME LEN.

usStackDepth [in] The size of the task stack specified as the number of variables the stack can
hold - not the number of bytes. For example, if the stack is 16 bits wide and
usStackDepth is defined as 100, 200 bytes will be allocated for stack storage.
The stack depth multiplied by the stack width must not exceed the maximum
value that can be contained in a variable of type size t.

pvParameters [in] Pointer that will be used as the parameter for the task being created.

uxPriority [in] The priority at which the task should run.

Page 41 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

pvCreatedTask [out] Used to pass back a handle by which the created task can be referenced.

Returns:

PortBASE TYPE pdPASS if the task was successfully created and added to a ready list, otherwise
an error code defined in the file projdefs.h.

Example:

// Task to be created.
void vTaskCode(void * pvParameters)
{

for(;i)

{

// Task code goes here.

}

}

// Function that creates a task.

void vOtherFunction(void)

{
static unsigned char ucParameterToPass;
xTaskHandle xHandle;

// Create the task, storing the handle. Note that the passed parameter
ucParameterToPass
// must exist for the lifetime of the task, so in this case 1is declared
static. If it was just an
// automatic stack variable it might no longer exist, or at least have
been corrupted, by the time
// the new task attempts to access it.
xTaskCreate (vTaskCode,
"NAME",
STACK SIZE,
&ucbParameterToPass,
tskIDLE PRIORITY,
&xHandle);

// Use the handle to delete the task.
vTaskDelete (xHandle);
}
6.1.3. vTaskDelete

This function removes a task from the RTOS real time kernels management. The task being deleted
will be removed from all ready, blocked, suspended and event lists.

[task.h]

void vTaskDelete (xTaskHandle pxTask);

Parameters:

pxTask [in] The handle of the task to be deleted. Passing NULL will cause the calling task to be
deleted.

Page 42 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Example:

void vOtherFunction(void)

{
xTaskHandle xHandle;

// Create the task, storing the handle.
xTaskCreate (vTaskCode,

"NAME" ,

STACK_SI ZE,

NULL,

tskI DLE_PRIORITY,

&xHandle) ;

// Use the handle to delete the task.
vTaskDelete (xHandle);

6.2. Task Control

6.2.1. vTaskDelay
This function delays a task for a given number of ticks.
[task.h]

void vTaskDelay(portTickType xTicksToDelay);

Parameters:
xTicksToDelay [in] The amount of time, in tick periods, that the calling task should block.

Example:

void vTaskFunction(void * pvParameters)

{
/* Block for 500ms. */
const portTickType xDelay = 500 / portTICK RATE MS;

for(;i)
{
/* Simply toggle the LED every 500ms, blocking between each toggle. */

vToggleLED() ;
vTaskDelay(xDelay);

}

6.2.2. vTaskDelayUntil

This function delays a task until a specified time. This function can be used by cyclical tasks to ensure
a constant execution frequency.

[task.h]

void vTaskDelayUntil (portTickType *pxPreviousWakeTime, portTickType
xTimeIncrement);

Page 43 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Parameters:

pxPreviousWakeTime [in] Pointer to a variable that holds the time at which the task was last
unblocked. The variable must be initialized with the current time prior to
its first use (see the example below). Following this the variable is
automatically updated within vTaskDelayUntil().

xTimelncrement [in] The cycle time period. The task will be unblocked at time
(*pxPreviousWakeTime + xTimelncrement). Calling vTaskDelayUntil with
the same xTimelncrement parameter value will cause the task to execute
with a fixed interval period.

Example:

// Perform an action every 10 ticks.
void vTaskFunction(void * pvParameters)

{
portTickType xLastWakeTime;

const portTickType xFrequency = 10;

// Initialise the xLastWakeTime variable with the current time.
xLastWakeTime = xTaskGetTickCount () ;

for(;7)
{
// Wait for the next cycle.
vTaskDelayUntil (&xLastWakeTime, xFrequency);

// Perform action here.
}

6.2.3. uxTaskPriorityGet
This function obtains the priority of any task.
[task.h]

unsigned portBASE TYPE uxTaskPriorityGet (xTaskHandle pxTask);

Parameters:

pxTask [in] Handle of the task to be queried. Passing a NULL handle results in the priority of the
calling task being returned.

Returns:
unsigned portBASE_TYPE The priority of pxTask.

Page 44 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Example:
void vAFunction(void)
{
xTaskHandle xHandle;

// Create a task, storing the handle.
xTaskCreate (vTaskCode,

"NAME",

STACK SIZE,

NULL,

tskI DLE PRIORITY,

&xHandle) ;

//

// Use the handle to obtain the priority of the created task.
// It was created with tskIDLE PRIORITY, but may have changed
// it itself.
if (uxTaskPriorityGet (xHandle) != tskIDLE PRIORITY)
{

// The task has changed its priority.
}

//

// Is our priority higher than the created task?
if (uxTaskPriorityGet (xHandle) < uxTaskPriorityGet (NULL))
{
// Our priority (obtained using NULL handle) is higher.
}
}

6.2.4. vTaskPrioritySet

This function sets the priority of any task. A context switch will occur before the function returns if the
priority being set is higher than the currently executing task.

[task.h]

void vTaskPrioritySet (xTaskHandle pxTask, unsigned POrtBASE TYPE
uxNewPriority);

Parameters:

pxTask [in] Handle to the task for which the priority is being set. Passing a NULL handle
results in the priority of the calling task being set.

uxNewPriority [in] The priority to which the task will be set.

Page 45 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

Example:

void vAFunction(void)

{
xTaskHandle xHandle;

// Create a task, storing the handle.
xTaskCreate (vTaskCode,

"NAME" ,

STACK_SIZE,

NULL,

tSkIDLE_PRIORITY,

&xHandle) ;

//

// Use the handle to raise the priority of the created task.
vTaskPrioritySet (xHandle, tskIDLE PRIORITY + 1);

/7

// Use a NULL handle to raise our priority to the same value.
vTaskPrioritySet (NULL, tskIDLE PRIORITY + 1);
}

6.2.5. vTaskSuspend

This function suspends any task. When suspended, a task will never get any microcontroller
processing time no matter what is the priority. Calls to vTaskSuspend are not accumulative - i.e.
calling vTaskSuspend () twice on the same task still only requires one call to vTaskResume () to
ready the suspended task.

[task.h]

void vTaskSuspend(xTaskHandle pxTaskToSuspend) ;

Parameters:

pxTaskToSuspend [in] Handle to the task being suspended. Passing a NULL handle will cause
the calling task to be suspended.

Example:

void vAFunction(void)

{
xTaskHandle xHandle;

// Create a task, storing the handle.
xTaskCreate (vTaskCode,

"NAME",

STACK SIZE,

NULL,

tSkIDLE_PRIORITY,

&xHandle) ;

//

// Use the handle to suspend the created task.
vTaskSuspend(xHandle);

//

Page 46 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

// The created task will not run during this period, unless
// another task calls vTaskResume (xHandle).

/]

// Suspend ourselves.
vTaskSuspend (NULL) ;

// We cannot get here unless another task calls vTaskResume
// with our handle as the parameter.

6.2.6. vTaskResume

This function resumes a suspended task. A task that has been suspended by one of more calls to
vTaskSuspend (') will be made available for running again by a single call to vTaskResume ().

[task.h]

void vTaskResume (xTaskHandle pxTaskToResume) ;

Parameters:

pxTaskToResume [in] Handle to the task being readied.

Example:

void vAFunction(void)

{
xTaskHandle xHandle;

// Create a task, storing the handle.
xTaskCreate (vTaskCode,

"NAME" ,

STACK_SI ZE,

NULL,

tskI DLE_PRIORITY,

&xHandle) ;

//

// Use the handle to suspend the created task.
vTaskSuspend (xHandle);

//

// The created task will not run during this period, unless
// another task calls vTaskResume (xHandle).

/]

// Resume the suspended task ourselves.
vTaskResume (xHandle);

// The created task will once again get microcontroller processing
// time in accordance with it priority within the system.

Page 47 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

6.3. Task Utilities

6.3.1. xTaskGetCurrentTaskHandle
This function gets the handle of the current task.
[task.h]

xTaskHandle xTaskGetCurrentTaskHandle(void);

Returns:

xTaskHandle The handle of the currently running (calling) task.

6.3.2. xTaskGetTickCount

This function gets the value of the count of ticks.
[task.h]

volatile portTickType xTaskGetTickCount (void);

Returns:
portTickType The count of ticks since vTaskStartScheduler was called.

6.3.3. xTaskGetSchedulerState

This function gets the state of the scheduler.
[task.h]

POrtBASE TYPE xTaskGetSchedulerState(void);

Returns:

portBASE_TYPE One of the following constants (defined within task.h):
taskSCHEDULER_NOT_STARTED, taskSCHEDULER_RUNNING,
taskSCHEDULER_SUSPENDED.

6.3.4. uxTaskGetNumberOfTasks
This function gets the number of tasks.
[task.h]

unsigned portBASE TYPE uxTaskGetNumberOfTasks(void);

Returns:

unsigned portBASE_TYPE The number of tasks that the real-time kernel is currently managing.
This includes all ready, blocked and suspended tasks. A task that
has been deleted but not freed by the idle task will also be included in
the count.

Page 48 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

6.4. Kernel Control

6.4.1. taskYIELD
This is a macro for forcing a context switch.
[task.h]

taskYIELD() ;

6.4.2. taskENTER_CRITICAL

This is a macro to mark the start of a critical code region. Preemptive context switches cannot occur
when in a critical region.

[task.h]

taskENTER CRITICAL() ;

6.4.3. taskEXIT_CRITICAL

This is a macro to mark the end of a critical code region. Preemptive context switches cannot occur
when in a critical region.

[task.h]

taskEXIT CRITICAL();

6.4.4. vTaskSuspendAll

This function suspends all real time kernel activity while keeping interrupts (including the kernel tick)
enabled. After calling vTaskSuspendAll () the calling task will continue to execute without the risk of
being swapped out until a call to xTaskResumeAll () has been made. API functions that have the
potential to cause a context switch (for example, vTaskDelayUntill (), xQueueSend (), etc.) must
not be called while the scheduler is suspended.

[task.h]

void vTaskSuspendAll (void);

Example:

void vTaskl (void * pvParameters)
{

for(;7)

{

// Task code goes here.

//

// At some point the task wants to perform a long operation during
// which it does not want to get swapped out. It cannot use

// taskENTER CRITICAL ()/taskEXIT CRITICAL () as the length of the
// operation may cause interrupts to be missed - including the

// ticks.

// Prevent the real time kernel swapping out the task.
vTaskSuspendAll ();

// Perform the operation here. There is no need to use critical
// sections as we have all the microcontroller processing time.

// During this time interrupts will still operate and the kernel

Page 49 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies
// tick count will be maintained.
//

// The operation i1s complete. Restart the kernel.
xTaskResumeAll () ;

6.4.5. xTaskResumeAll

This function resumes real-time kernel activity following a call to vTaskSuspendAll (). After a call to
xTaskSuspendAll (), the kernel will take control of which task is executing at any time.

[task.h]

portBASE TYPE xTaskResumeAll (void);

Returns:

PortBASE_TYPE If resuming the scheduler caused a context switch then pdTRUE is returned,
otherwise pdFALSE is returned.

Example:

void vTaskl (void * pvParameters)
{

for(;7)

{

// Task code goes here.

//

// At some point the task wants to perform a long operation during
// which it does not want to get swapped out. It cannot use

// taskENTER CRITICAL ()/taskEXIT CRITICAL () as the length of the
// operation may cause interrupts to be missed - including the

// ticks.

// Prevent the real time kernel swapping out the task.
xTaskSuspendAll () ;

// Perform the operation here. There is no need to use critical
// sections as we have all the microcontroller processing time.
// During this time interrupts will still operate and the real
// time kernel tick count will be maintained.

//

// The operation is complete. Restart the kernel. We want to
force

// a context switch - but there is no point if resuming the
scheduler

// caused a context switch already.

if (!'xTaskResumeAll ())

{

taskYIELD () ;
}

Page 50 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

6.5. Queue Management

6.5.1. uxQueueMessagesWaiting
This function returns the number of messages stored in a queue.

[queue.h]

unsigned portBASE TYPE uxQueueMessagesWaiting(xQueueHandle xQueue);

Parameters:

xQueue [in] A handle to the queue being queried.

Returns:

unsigned portBASE_TYPE The number of messages available in the queue.

6.5.2. XQueueCreate

This function creates a new queue instance. This allocates the storage required by the new queue
and returns a handle for the queue.

[queue.h]
xQueueHandle xQueueCreate (
unsigned portBASE TYPE uxQueueLength,
unsigned portBASE TYPE uxItemSize
) ;

Parameters:
uxQueuelLength [in] The maximum number of items that the queue can contain.

uxltemSize [in] The number of bytes each item in the queue will require. Items are queued by
copy, not by reference, so this is the number of bytes that will be copied for each
posted item. Each item on the queue must be the same size.

Returns:

xQueueHandle If the queue is successfully created, then a handle to the newly created queue is
returned. If the queue cannot be created, then 0 is returned.

Example:

struct AMessage

{
portCHAR ucMessagelD;
portCHAR ucDatal 20 1;

}i

void vATask(void *pvParameters)

{

xQueueHandle xQueuel, xQueue?2;

// Create a queue capable of containing 10 unsigned long values.
xQueuel = xQueueCreate(10, sizeof(unsigned portLONG));
if (xQueuel ==)

{

Page 51 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

// Queue was not created and must not be used.

}

// Create a queue capable of containing 10 pointers to AMessage

structures.
// These should be passed by pointer as they contain a lot of data.
xQueue?2 = xQueueCreate(10, sizeof(struct AMessage *));

if(xQueue2 ==)
{

// Queue was not created and must not be used.

}

// ... Rest of task code. }

6.5.3. vQueueDelete

This function deletes a queue - freeing all the memory allocated for storing of items placed on the
queue.

[queue.h]

void vQueueDelete (xQueueHandle xQueue) ;

Parameters:

XQueue [in] A handle to the queue to be deleted.

6.5.4. XQueueSend

This is a macro that calls xQueueGenericSend(). It is equivalent to xQueueSendToBack(). Post an
item on a queue. The item is queued by copy, not by reference.

[queue.h]

PortBASE TYPE xQueueSend (
xQueueHandle xQueue,
const void * pvItemToQueue,
portTickType xTicksToWait
) 7

Parameters:

xQueue [in] The handle to the queue on which the item is to be posted.

pvitemToQueue [in] A pointer to the item that is to be placed on the queue. The size of the items
the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvitemToQueue into the queue storage area.

xTicksToWait [inN] The maximum amount of time the task should block waiting for space to
become available on the queue, should it already be full. The call will return
immediately if the queue is full and xTicksToWait is set to 0. The time is defined
in tick periods so the constant portTICK_RATE_MS should be used to convert to
real time if this is required. Specifying the block time as portMAX DELAY will
cause the task to block indefinitely (without a timeout).

Returns:
PortBASE_TYPE pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.

Page 52 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

Example:

struct AMessage
{
portCHAR ucMessagelD;
portCHAR ucDatal 20];
} xMessage;

unsigned portLONG ulVar = 10UL;
void vATask(void *pvParameters)
{

xQueueHandle xQueuel, xQueue?2;

struct AMessage *pxMessage;

// Create a queue capable of containing 10 unsigned long values.
xQueuel = xQueueCreate(10, sizeof(unsigned portLONG));

// Create a queue capable of containing 10 pointers to AMessage

structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));
//
1f(xQueuel != 0)

// Send an unsigned long. Wait for 10 ticks for space to become
// available if necessary.
if (xQueueSend(xQueuel, (void *) &ulVar,
(portTickType) 10) != pdPASS)
{
// Failed to post the message, even after 10 ticks.

}

if(xQueue2 != 0)

// Send a pointer to a struct AMessage object. Don't block if the

// queue is already full.

pxMessage = & xMessage;

xQueueSend (xQueue2, (void *) &pxMessage, (portTickType) 0);
}

// ... Rest of task code.
}

6.5.5. xQueueSendToBack

This is a macro that calls xQueueGenericSend(). It is equivalent to xQueueSend().Post an item to
the back of a queue. The item is queued by copy, not by reference.

[queue.h]

pPortBASE TYPE xQueueSendToBack (
xQueueHandle xQueue,
const void * pvItemToQueue,
portTickType xTicksToWait
) ;

Page 53 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Parameters:

xQueue [in] The handle to the queue on which the item is to be posted.

pvitemToQueue [in] A pointer to the item that is to be placed on the queue. The size of the
items the queue will hold was defined when the queue was created, so this
many bytes will be copied from pvitemToQueue into the queue storage area.

xTicksToWait [in] The maximum amount of time the task should block waiting for space to
become available on the queue, should it already be full. The call will return
immediately if this is set to 0. The time is defined in tick periods so the
constant portTICK_RATE_MS should be used to convert to real time if this is
required. Specifying the block time as portMAX_DELAY will cause the task to
block indefinitely (without a timeout).

Returns:

pPortBASE_TYPE pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.

Example:

struct AMessage
{
portCHAR ucMessagelD;
portCHAR ucDatal[20];
} xMessage;

unsigned portLONG ulVar = 10UL;
void vATask(void *pvParameters)
{

xQueueHandle xQueuel, xQueue?2;

struct AMessage *pxMessage;

// Create a queue capable of containing 10 unsigned long values.
xQueuel = xQueueCreate(10, sizeof(unsigned portLONG));

// Create a queue capable of containing 10 pointers to AMessage

structures.
// These should be passed by pointer as they contain a lot of data.
xQueue?2 = xQueueCreate(10, sizeof(struct AMessage *));
//
if (xQueuel != 0)

// Send an unsigned long. Wait for 10 ticks for space to become
// available if necessary.
if (xQueueSendToBack (xQueuel, (void *) &ulVar, (portTickType)
10) != pdPASS)
{
// Failed to post the message, even after 10 ticks.
}

if (xQueue2 !'= 0)

Page 54 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSendToBack (xQueue2, (void *) &pxMessage,
(portTickType) 0);
}

// ... Rest of task code.
}

6.5.6. XxQueueSendToToFront

This is a macro that calls xQueueGenericSend(). Post an item to the front of a queue. The item is
queued by copy, not by reference.

[queue.h]

PortBASE TYPE xQueueSendToToFront (
xQueueHandle xQueue,
const void * pvItemToQueue,
portTickType xTicksToWait

Parameters:

xQueue [in] The handle to the queue on which the item is to be posted.

pvitemToQueue [in] A pointer to the item that is to be placed on the queue. The size of the
items the queue will hold was defined when the queue was created, so this
many bytes will be copied from pvitemToQueue into the queue storage area.

xTicks ToWait [in] The maximum amount of time the task should block waiting for space to
become available on the queue, should it already be full. The call will return
immediately if this is set to 0. The time is defined in tick periods so the
constant portTICK_RATE_MS should be used to convert to real time if this is
required. Specifying the block time as portMAX_DELAY will cause the task to
block indefinitely (without a timeout).

Returns:

PortBASE TYPE pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.

Example:

struct AMessage

{
portCHAR ucMessagelD;
portCHAR ucDatal 20 1;
} xMessage;

unsigned portLONG ulvVar = 10UL;
void vATask(void *pvParameters)
{

xQueueHandle xQueuel, xQueue?2;
struct AMessage *pxMessage;

Page 55 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

// Create a queue capable of containing 10 unsigned long values.
xQueuel = xQueueCreate(10, sizeof(unsigned portLONG));

// Create a queue capable of containing 10 pointers to AMessage

structures.
// These should be passed by pointer as they contain a lot of data.
xQueue?2 = xQueueCreate(10, sizeof(struct AMessage *));
//
if(xQueuel != 0)

{
// Send an unsigned long. Wait for 10 ticks for space to become
// available if necessary.
if (xQueueSendToFront (xQueuel, (void *) &ulVar,
(portTickType) 10) != pdPASS)
{
// Failed to post the message, even after 10 ticks.

}

if(xQueue2 != 0)
{
// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSendToFront (xQueue2, (void *) &pxMessage,
(portTickType) 0);

// ... Rest of task code.
}

6.5.7. xQueueReceive

This is a macro that calls the xQueueGenericReceive() function. Receives an item from a queue. The
item is received by copy so a buffer of adequate size must be provided. The number of bytes copied
into the buffer was defined when the queue was created.

[queue.h]

POrtBASE TYPE xQueueReceive (
xQueueHandle xQueue,
void *pvBuffer,
portTickType xTicksToWait
);

Parameters:
pxQueue [in] The handle to the queue from which the item is to be received.
pvBuffer [out] Pointer to the buffer into which the received item will be copied.

xTicksToWait [in] The maximum amount of time the task should block waiting for an item to receive
should the queue be empty at the time of the call. Setting xTicksToWait to 0 will
cause the function to return immediately if the queue is empty. The time is defined in
tick periods so the constant portTICK_RATE_MS should be used to convert to real

Page 56 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

time if this is required. Specifying the block time as portMAX_DELAY will cause the
task to block indefinitely (without a timeout).

Returns:

PortBASE_TYPE pdTRUE if an item was successfully received from the queue, otherwise
pdFALSE.

Example:

struct AMessage

{
portCHAR ucMessagelD;

pPortCHAR ucDhatal 20];
} xMessage;

xQueueHandle xQueue;

// Task to create a queue and post a value.
void vATask(void *pvParameters)

{

struct AMessage *pxMessage;

// Create a queue capable of containing 10 pointers to AMessage

structures.
// These should be passed by pointer as they contain a lot of data.
xQueue = xQueueCreate(10, sizeof(struct AMessage *));

if (xQueue ==)

{

// Failed to create the queue.

}
//

// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.

pxMessage = & xMessage;
xQueueSend (xQueue, (void *) &pxMessage, (portTickType) 0);

// ... Rest of task code.
}

// Task to receive from the queue.
void vADifferentTask(void *pvParameters)

{

struct AMessage *pxRxedMessage;

if(xQueue != 0)

{

// Receive a message on the created queue. Block for 10 ticks if a
// message is not immediately available.
if (xQueueReceive (xQueue, & (pxRxedMessage),
(portTickType) 10))
{

// pcRxedMessage now points to the struct AMessage variable

posted
// by vATask.

}

Page 57 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

// ... Rest of task code.
}

6.5.8. xQueuePeek

This is a macro that calls the xQueueGenericReceive() function. Receive an item from a queue
without removing the item from the queue. The item is received by copy so a buffer of adequate size
must be provided. The number of bytes copied into the buffer was defined when the queue was
created. Successfully received items remain on the queue so will be returned again by the next call, or
a call to xQueueReceive().

[queue.h]

pPortBASE TYPE xQueuePeek (
xQueueHandle xQueue,
void *pvBuffer,
portTickType xTicksToWait

) ;

Parameters:

XxQueue [in] The handle to the queue from which the item is to be received.

pvBuffer [out] Pointer to the buffer into which the received item will be copied. This must be at
least large enough to hold the size of the queue item defined when the queue was
created.

xTicksToWait [in] The maximum amount of time the task should block waiting for an item to receive
should the queue be empty at the time of the call. The time is defined in tick periods
so the constant portTICK_RATE_MS should be used to convert to real time if this is
required. Specifying the block time as portMAX _DELAY will cause the task to block
indefinitely (without a timeout).

Returns:

portBASE_TYPE pdTRUE if an item was successfully received (peeked) from the queue, otherwise
PdFALSE.

Example:

struct AMessage

{
portCHAR ucMessagelD;

portCHAR ucDatal 20];
} xMessage;

xQueueHandle xQueue;

// Task to create a queue and post a value.
void vATask(void *pvParameters)

{

struct AMessage *pxMessage;

// Create a queue capable of containing 10 pointers to AMessage

structures.
// These should be passed by pointer as they contain a lot of data.
xQueue = xQueueCreate(10, sizeof(struct AMessage *));

Page 58 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.

Card & Reader Technologies

1f (xQueue ==)

{

// Failed to create the queue.

}

//

// Send a pointer to a struct AMessage object. Don't block if the

// queue is already full.

pxMessage = & xMessage;
xQueueSend (xQueue, (void *) &pxMessage, (portTickType) 0);

// ... Rest of task code.
}

// Task to peek the data from the queue.
void vADifferentTask(void *pvParameters)

{

struct AMessage *pxRxedMessage;

if(xQueue != 0)

{
// Peek a message on the created queue. Block for 10 ticks if a

// message is not immediately available.
if (xQueuePeek (xQueue, & (pxRxedMessage), (portTickType) 10))

{

// pcRxedMessage now points to the struct AMessage variable

posted
// by vATask, but the item still remains on the queue.

}

// ... Rest of task code.

Page 59 of 76

info@acs.com.hk
www.acs.com.hk

ACR89U-A2 - Application Programming Interface

Version 1.00

@ Advanced Card Systems Ltd.
Card & Reader Technologies

6.6. Semaphore/Mutexes

6.6.1. vSemaphoreCreateBinary

This is a macro that creates a semaphore by using the existing queue mechanism. The queue length
is 1 as this is a binary semaphore. The data size is 0 as we don't want to actually store any data - we
just want to know if the queue is empty or full. Binary semaphores and mutexes are very similar but
have some subtle differences: Mutexes include a priority inheritance mechanism; binary semaphores
do not. This makes binary semaphores the better choice for implementing synchronization (between
tasks or between tasks and an interrupt), and mutexes the better choice for implementing simple
mutual exclusion. A binary semaphore need not be given back once obtained, so task synchronization
can be implemented by one task/interrupt continuously 'giving' the semaphore while another
continuously 'takes' the semaphore. The priority of a task that 'takes' a mutex can potentially be raised
if another task of higher priority attempts to obtain the same mutex. The task that owns the mutex
'inherits' the priority of the task attempting to 'take' the same mutex. This means the mutex must
always be 'given' back - otherwise the higher priority task will never be able to obtain the mutex, and
the lower priority task will never 'disinherit' the priority. An example of a mutex being used to
implement mutual exclusion is provided on the xSemaphoreTake() documentation page. Both mutex
and binary semaphores are assigned to variables of type xSemaphoreHandle and can be used in any
API function that takes a parameter of this type.

[semphr.h]

vSemaphoreCreateBinary (xSemaphoreHandle xSemaphore) ;

Parameters:

xSemaphore [out] Handle to the created semaphore. Should be of type xSemaphoreHandle.

Example:

xSemaphoreHandle xSemaphore;

void vATask(void * pvParameters)

{
// Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
// This is a macro so pass the variable in directly.
vSemaphoreCreateBinary(xSemaphore);

if (xSemaphore != NULL)
{

// The semaphore was created successfully.
// The semaphore can now be used.

}

6.6.2. xSemaphoreCreateCounting
This is a macro that creates a counting semaphore by using the existing queue mechanism.
Counting semaphores are typically used for two things:

1. Counting events.

In this usage scenario, an event handler will 'give' a semaphore each time an event occurs
(incrementing the semaphore count value), and a handler task will 'take' a semaphore each time it
processes an event (decrementing the semaphore count value). The count value is therefore the
difference between the number of events that have occurred and the number that have been
processed. In this case it is desirable for the initial count value to be zero.

Page 60 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

2. Resource management.

In this usage scenario, the count value indicates the number of resources available. To obtain
control of a resource a task must first obtain a semaphore - decrementing the semaphore count
value. When the count value reaches zero there are no free resources. When a task finishes with
the resource it 'gives' the semaphore back - incrementing the semaphore count value. In this case
it is desirable for the initial count value to be equal to the maximum count value, indicating that all
resources are free.

[semphr.h]

xSemaphoreHandle xSemaphoreCreateCounting
(

unsigned portBASE TYPE uxMaxCount,
unsigned portBASE TYPE uxInitialCount

) i

Parameters:

uxMaxCount [in] The maximum count value that can be reached. When the semaphore
reaches this value it can no longer be 'given'.

uxInitialCount [in] The count value assigned to the semaphore when it is created.

Returns:

xSemaphoreHandle Handle to the created semaphore. NULL if the semaphore could not be
created.

Example:

void vATask(void * pvParameters)

{

xSemaphoreHandle xSemaphore;

// Semaphore cannot be used before a call to
xSemaphoreCreateCounting () .

// The max value to which the semaphore can count shall be 10, and the

// initial value assigned to the count shall be 0.

xSemaphore = xSemaphoreCreateCounting(10, 0);

if (xSemaphore != NULL)

{
// The semaphore was created successfully.
// The semaphore can now be used.

}

6.6.3. xSemaphoreCreateMutex

This is a macro that creates a mutex semaphore by using the existing queue mechanism. Mutexes
created using this macro can be accessed using the xSemaphoreTake() and xSemaphoreGive()
macros. The xSemaphore TakeRecursive() and xSemaphoreGiveRecursive() macros should not be
used.

Mutexes and binary semaphores are very similar but have some subtle differences: Mutexes include a
priority inheritance mechanism, binary semaphores do not. This makes binary semaphores the better
choice for implementing synchronization (between tasks or between tasks and an interrupt), and
mutexes the better choice for implementing simple mutual exclusion. The priority of a task that 'takes’
a mutex can potentially be raised if another task of higher priority attempts to obtain the same mutex.
The task that owns the mutex 'inherits' the priority of the task attempting to 'take' the same mutex.

Page 61 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

This means the mutex must always be 'given' back - otherwise the higher priority task will never be
able to obtain the mutex, and the lower priority task will never 'disinherit' the priority. An example of a
mutex being used to implement mutual exclusion is provided on the xSemaphoreTake()
documentation page. A binary semaphore need not be given back once obtained, so task
synchronization can be implemented by one task/interrupt continuously 'giving' the semaphore while
another continuously 'takes' the semaphore. Both mutex and binary semaphores are assigned to
variables of type xSemaphoreHandle and can be used in any API function that takes a parameter of
this type.

[semphr.h]

xSemaphoreHandle xSemaphoreCreateMutex (void);

Returns:

xSemaphoreHandle Handle to the created semaphore. Should be of type xSemaphoreHandle.

Example:

xSemaphoreHandle xSemaphore;

void vATask(void * pvParameters)

{
// Mutex semaphores cannot be used before a call to
// xSemaphoreCreateMutex (). The created mutex is returned.
xSemaphore = xSemaphoreCreateMutex() ;

if (xSemaphore != NULL)

{
// The semaphore was created successfully.
// The semaphore can now be used.

}

6.6.4. xSemaphoreCreateRecursiveMutex

This is a macro that implements a recursive mutex by using the existing queue mechanism. Mutexes
created using this macro can be accessed using the xSemaphoreTakeRecursive() and
xSemaphoreGiveRecursive() macros. The xSemaphoreTake() and xSemaphoreGive() macros
should not be used. A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
doesn't become available again until the owner has called xSemaphoreGiveRecursive() for each
successful 'take' request. For example, if a task successfully 'takes' the same mutex five (5) times
then the mutex will not be available to any other task until it has also 'given' the mutex back exactly
five times. This type of semaphore uses a priority inheritance mechanism so a task 'taking' a
semaphore MUST ALWAYS 'give' the semaphore back once the semaphore it is no longer required.

[semphr.h]

xSemaphoreHandle xSemaphoreCreateRecursiveMutex(void);

Returns:

xSemaphoreHandle xSemaphoreHandle to the created mutex semaphore. Should be of type
xSemaphoreHandle.

Page 62 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

Example:

xSemaphoreHandle xMutex;

void vATask(void * pvParameters)

{

// Semaphore cannot be used before a call to xSemaphoreCreateMutex ().
// This is a macro so pass the variable in directly.
xMutex = xSemaphoreCreateRecursiveMutex () ;

if (xMutex != NULL)

{
// The mutex type semaphore was created successfully.
// The mutex can now be used.

}

6.6.5. xSemaphoreTake

This is a macro to obtain a semaphore. The semaphore must have previously been created with a call
to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or xSemaphoreCreateCounting().

[semphr.h]

signed portBASE TYPE xSemaphoreTake
(

xSemaphoreHandle xSemaphore,
portTickType xBlockTime

) ¢

Parameters:

xSemaphore [in] A handle to the semaphore being taken - obtained when the semaphore was
created.

xBlockTime [in] The time in ticks to wait for the semaphore to become available. The macro
portTICK_RATE_MS can be used to convert this to a real time. A block time of zero
can be used to poll the semaphore. Specifying the block time as portMAX_DELAY
will cause the task to block indefinitely (without a timeout).

Returns:

signed portBASE_TYPE pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime expired
without the semaphore becoming available.

Example:

xSemaphoreHandle xSemaphore = NULL;
// A task that creates a semaphore.
void vATask(void * pvParameters)
{
// Create the semaphore to guard a shared resource. As we are using
// the semaphore for mutual exclusion we create a mutex semaphore
// rather than a binary semaphore.
xSemaphore = xSemaphoreCreateMutex() ;

}

// A task that uses the semaphore.
void vAnotherTask(void * pvParameters)

{
// ... Do other things.

Page 63 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

if (xSemaphore != NULL)
{
// See 1f we can obtain the semaphore. If the semaphore is not
available
// wait 10 ticks to see 1if it becomes free.
if (xSemaphoreTake (xSemaphore, (portTickType) 10) == pdTRUE)

{

// We were able to obtain the semaphore and can now access the
// shared resource.

//

// We have finished accessing the shared resource. Release the
// semaphore.
xSemaphoreGive (xSemaphore);

}

else

{

// We could not obtain the semaphore and can therefore not
access
// the shared resource safely.

}
}

6.6.6. xSemaphoreTakeRecursive

This is a macro to recursively obtain, or 'take', a mutex type semaphore. The mutex must have
previously been created using a call to xSemaphoreCreateRecursiveMutex(). This macro must not be
used on mutexes created using xSemaphoreCreateMutex(). A mutex used recursively can be 'taken'
repeatedly by the owner. The mutex does not become available again until the owner has called
xSemaphoreGiveRecursive() for each successful 'take' request. For example, if a task successfully
'takes' the same mutex five (5) times then the mutex will not be available to any other task until it has
also 'given' the mutex back exactly five times.

[semphr.h]

POrtBASE TYPE xSemaphoreTakeRecursive (

xSemaphoreHandle xMutex,
portTickType xBlockTime
)i

Parameters:

xXMutex [in] A handle to the mutex being obtained. This is the handle returned by
xSemaphoreCreateRecursiveMutex().

xBlockTime [in] The time in ticks to wait for the semaphore to become available. The macro
portTICK_RATE_MS can be used to convert this to a real time. A block time of zero
can be used to poll the semaphore. If the task already owns the semaphore then
xSemaphore TakeRecursive() will return immediately no matter what the value of
xBlockTime.

Returns:

POortBASE_TYPE pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime expired without
the semaphore becoming available.

Page 64 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

Example:

xSemaphoreHandle xMutex = NULL;

// A task that creates a mutex.

void vATask(void * pvParameters)

{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex () ;

}

// A task that uses the mutex.
void vAnotherTask(void * pvParameters)

{

// ... Do other things.
if (xMutex != NULL)
{
// See if we can obtain the mutex. If the mutex is not available
// wait 10 ticks to see if it becomes free.
if(xSemaphoreTakeRecursive(xMutex, (portTickType) 10) ==
PdTRUE)

{

// We were able to obtain the mutex and can now access the
// shared resource.

//

// For some reason due to the nature of the code further calls to

// xSemaphoreTakeRecursive () are made on the same mutex. In real

// code these would not be just sequential calls as this would make
// no sense. Instead the calls are likely to be buried inside
// a more complex call structure.
xSemaphoreTakeRecursive (xMutex, (portTickType) 10);
xSemaphoreTakeRecursive (xMutex, (portTickType) 10);

// The mutex has now been 'taken' three times, so will not be

// available to another task until it has also been given back

// three times. Again it is unlikely that real code would have
// these calls sequentially, but instead buried in a more complex

// call structure. This is just for illustrative purposes.

xSemaphoreGiveRecursive (xMutex) ;

xSemaphoreGiveRecursive (xMutex) ;

xSemaphoreGiveRecursive (xMutex) ;

// Now the mutex can be taken by other tasks.
}

else

{

// We could not obtain the mutex and can therefore not access
// the shared resource safely.

6.6.7. xSemaphoreGive

This is a macro to release a semaphore. The semaphore must have previously been created with a
call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or xSemaphoreCreateCounting(),
and obtained using sSemaphoreTake(). This macro must also not be used on semaphores created
using xSemaphoreCreateRecursiveMutex().

Page 65 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

[semphr.h]

signed portBASE TYPE xSemaphoreGive (xSemaphoreHandle xSemaphore);

Parameters:

xSemaphore [in] A handle to the semaphore being released. This is the handle returned when
the semaphore was created.

Returns:

signed portBASE_TYPE pdTRUE if the semaphore was released. pdFALSE if an error occurred.
Semaphores are implemented using queues. An error can occur if there
is no space on the queue to post a message - indicating that the
semaphore was not first obtained correctly.

Example:

xSemaphoreHandle xSemaphore = NULL;

void vATask(void * pvParameters)
{
// Create the semaphore to guard a shared resource. As we are using
// the semaphore for mutual exclusion we create a mutex semaphore
// rather than a binary semaphore.
xSemaphore = xSemaphoreCreateMutex () ;

if (xSemaphore != NULL)
{
if (xSemaphoreGive (xSemaphore) != pdTRUE)
{
// We would expect this call to fail because we cannot give
// a semaphore without first "taking" it!
1
// Obtain the semaphore - don't block if the semaphore is not
// immediately available.
1if (xSemaphoreTake (xSemaphore, (portTickType) 0))
{

// We now have the semaphore and can access the shared

resource.
//
// We have finished accessing the shared resource so can free
the
// semaphore.
1if(xSemaphoreGive (xSemaphore) != pdTRUE)
{
// We would not expect this call to fail because we must
have
// obtained the semaphore to get here.
}
}
}
}
6.6.8. xSemaphoreGiveRecursive

This is a macro to recursively release, or 'give', a mutex type semaphore. The mutex must have
previously been created using a call to xSemaphoreCreateRecursiveMutex(). This macro must not be

Page 66 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

used on mutexes created using xSemaphoreCreateMutex(). A mutex used recursively can be 'taken’
repeatedly by the owner. The mutex doesn't become available again until the owner has called
xSemaphoreGiveRecursive() for each successful 'take' request. For example, if a task successfully
'takes' the same mutex five (5) times then the mutex will not be available to any other task until it has
also 'given' the mutex back exactly five times.

[semphr.h]

POrtBASE TYPE xSemaphoreGiveRecursive (xSemaphoreHandle xMutex);

Parameters:

xMutex [in] A handle to the mutex being released, or 'given'. This is the handle returned by
xSemaphoreCreateRecursiveMutex().

Returns:
PortBASE_TYPE pdTRUE if the semaphore was successfully given.

Example:

xSemaphoreHandle xMutex = NULL;

// A task that creates a mutex.

void vATask(void * pvParameters)

{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex() ;

}

// A task that uses the mutex.
void vAnotherTask(void * pvParameters)

{

// ... Do other things.
if (xMutex != NULL)
{
// See if we can obtain the mutex. If the mutex i1s not available
// wait 10 ticks to see if it becomes free.
if (xSemaphoreTakeRecursive(xMutex, (portTickType) 10) ==
pdTRUE)

{
// We were able to obtain the mutex and can now access the
// shared resource.

/]

// For some reason due to the nature of the code further calls
to

// xSemaphoreTakeRecursive () are made on the same mutex. In

real

// code these would not be Jjust sequential calls as this would
make

// no sense. Instead the calls are likely to be buried inside

// a more complex call structure.

xSemaphoreTakeRecursive (xMutex, (portTickType) 10);

xSemaphoreTakeRecursive (xMutex, (portTickType) 10);

// The mutex has now been 'taken' three times, so will not be
// available to another task until it has also been given back

Page 67 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

// three times. Again it is unlikely that real code would have
// these calls sequentially, it would be more likely that the

calls
// to xSemaphoreGiveRecursive () would be called as a call stack

// unwound. This 1is Jjust for demonstrative purposes.
xSemaphoreGiveRecursive (xMutex) ;
xSemaphoreGiveRecursive (xMutex) ;
xSemaphoreGiveRecursive (xMutex) ;

// Now the mutex can be taken by other tasks.
}

else

{

// We could not obtain the mutex and can therefore not access
// the shared resource safely.

Page 68 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

6.7. Software Timers

Timer functionality is provided by a timer service/daemon task. Many of the public FreeRTOS timer
API functions send commands to the timer service task though a queue called the timer command
queue. The timer command queue is private to the kernel itself and is not directly accessible to
application code. The length of the timer command queue is set by the
configTIMER_QUEUE_LENGTH configuration constant. The timer service/daemon task priority is set
by the configTIMER_TASK_PRIORITY configuration constant.

6.7.1. xTimerCreate

This function creates a new software timer instance. This allocates the storage required by the new
timer, initializes the new timer’s internal state, and returns a handle by which the new timer can be
referenced. Timers are created in the dormant state. The xTimerStart(), xTimerReset() and
xTimerChangePeriod() API functions can all be used to transition a timer into the active state.

[timers.h]

xTimerHandle xTimerCreate(const signed char *pcTimerName,
portTickType xTimerPeriod,
unsigned portBASE TYPE uxAutoReload,
void * pvTimerID,
tmrTIMER CALLBACK pxCallbackFunction);

Parameters:

pcTimerName [in] A text name that is assigned to the timer. This is done purely to assist
debugging. The kernel itself only ever references a timer by its handle, and
never by its name.

xTimerPeriod [in] The timer period. The time is defined in tick periods so the constant
portTICK_RATE_MS can be used to convert a time that has been specified in
milliseconds. For example, if the timer must expire after 100 ticks, then
xTimerPeriod should be set to 100. Alternatively, if the timer must expire after
500ms, then xPeriod can be set to (500/portTICK_RATE_MS) provided
configTICK_RATE_HZ is less than or equal to 1000.

uxAutoReload [in] If uxAutoReload is set to pdTRUE, then the timer will expire repeatedly
with a frequency set by the xTimerPeriod parameter. If uxAutoReload is set
to pdFALSE, then the timer will be a one-shot and enter the dormant state
after it expires.

pvTimerlD [in] An identifier that is assigned to the timer being created. Typically this
would be used in the timer callback function to identify which timer expired
when the same callback function is assigned to more than one timer.

pxCallbackFunction [in] The function to call when the timer expires. Callback functions must have
the prototype defined by tmrTIMER CALLBACK, which is "void
vCallbackFunction(xTimerHandle xTimer),".

Returns:

xTimerHandle If the timer is successfully create then a handle to the newly created timer is
returned. If the timer cannot be created (because either there is insufficient
FreeRTOS heap remaining to allocate the timer structures, or the timer

Page 69 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

period was set to 0) then 0 is returned.

Example:
#define NUM TIMERS 5

/* An array to hold handles to the created timers. */
xTimerHandle xTimers[NUM TIMERS];

/* An array to hold a count of the number of times each timer expires. */
long lExpireCounters[NUM TIMERS] = { 0 };

/* Define a callback function that will be used by multiple timer
instances.

The callback function does nothing but count the number of times the

associated timer expires, and stop the timer once the timer has expired

10 times. */

void vTimerCallback(xTimerHandle pxTimer)

{

long lArrayIndex;

const long xMaxExpiryCountBeforeStopping = 10;

/* Optionally do something if the pxTimer parameter is NULL. */
configASSERT (pxTimer);

/* Which timer expired? */
lArrayIndex = (long) pvTimerGetTimerID(pxTimer);

/* Increment the number of times that pxTimer has expired. */
lExpireCounters|[lArrayIndex] += 1;

/* If the timer has expired 10 times then stop it from running. */
if (lExpireCounters[lArrayIndex] == xMaxExpiryCountBeforeStopping)
{
/* Do not use a block time if calling a timer API function from a
timer callback function, as doing so could cause a deadlock! */
xTimerStop (pxTimer, 0);

}

void main(void)

{

long x;

/* Create then start some timers. Starting the timers Dbefore the
scheduler
has been started means the timers will start running immediately that
the scheduler starts. */
for(x = 0; x < NUM _TIMERS; x++)
{
xTimers|[x] = xTimerCreate (
"Timer", /* Just a text name, not used by the kernel.*/
(100 * x), /* The timer period in ticks.*/
pdTRUE, /* The timers will auto-reload themselves when
they expire. */
(void *) x, /* Assign each timer a unique id equal to
its array index. */
vTimerCallback /* Each timer calls the same callback
when it expires. */

)i

Page 70 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.

Card & Reader Technologies

if(xTimers|[x] == NULL)
{
/* The timer was not created. */

}
else
{
/* Start the timer. No block time is specified, and even if
one was, it would be ignored because the scheduler has not
yet been started. */
if(xTimerStart(xTimers[x], 0) != pdPASS)
{
/* The timer could not be set into the Active state. */

}
}
/*

Create tasks here.

*/

/* Starting the scheduler will start the timers running as they have
already been set into the active state. */
xTaskStartScheduler () ;

/* Should not reach here. */
for(;;):
}
6.7.2. xTimerlsTimerActive
This function Queries a timer to see if it is active or dormant.
A timer will be dormant if:
1. It has been created but not started, or

2. ltis an expired on-shot timer that has not been restarted.

[timers.h]

POrtBASE TYPE xTimerIsTimerActive (xTimerHandle xTimer);

Parameters:

xTimer [in] The timer being queried.

Returns:

portBASE_TYPE pdFALSE will be returned if the timer is dormant. A value other than
PdFALSE will be returned if the timer is active.

Example:

/* This function assumes xTimer has already been created. */
void vAFunction(xTimerHandle xTimer)
{
if(xTimerIsTimerActive(xTimer) != pdFALSE)
/*or more simply and equivalently "if (xTimerIsTimerActive(xTimer))" */

Page 71 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

{

/* xTimer is active, do something. */

}

else

{

/* xTimer is not active, do something else. */
}
}

6.7.3. xTimerStart

This function starts a timer that was previously created using the xTimerCreate() API function. If the
timer had already been started and was already in the active state, then xTimerStart() has equivalent
functionality to the xTimerReset() API function. Starting a timer ensures the timer is in the active
state. If the timer is not stopped, deleted, or reset in the meantime, the callback function associated
with the timer will get called 'n 'ticks after xTimerStart() was called, where 'n' is the timers defined
period.

[timers.h]

POrtBASE TYPE xTimerStart(xTimerHandle xTimer, portTickType xBlockTime);

Parameters:

xTimer [in] The handle of the timer being started/restarted.

xBlockTime [in] Specifies the time, in ticks, that the calling task should be held in the Blocked
state to wait for the start command to be successfully sent to the timer command
queue, should the queue already be full when xTimerStart() was called.

Returns:

POrtBASE_TYPE pdFAIL will be returned if the start command could not be sent to the timer
command queue even after xBlockTime ticks had passed. pdPASS will be
returned if the command was successfully sent to the timer command queue.
When the command is actually processed will depend on the priority of the timer
service/daemon task relative to other tasks in the system, although the timers
expiry time is relative to when xTimerStart() is actually called.

6.7.4. xTimerStop

This function stops a timer that was previously started using either of the xTimerStart(), xTimerReset(
) and xTimerChangePeriod() API functions.

[timers.h]

PortBASE TYPE xTimerStop(xTimerHandle xTimer, portTickType xBlockTime);

Parameters:

xTimer [in] The handle of the timer being stopped.

xBlockTime [in] Specifies the time, in ticks, that the calling task should be held in the Blocked
state to wait for the stop command to be successfully sent to the timer command
queue, should the queue already be full when xTimerStop() was called.

Page 72 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies
Returns:

portBASE_TYPE pdFAIL will be returned if the stop command could not be sent to the timer
command queue even after xBlockTime ticks had passed. pdPASS will be
returned if the command was successfully sent to the timer command queue.
When the command is actually processed will depend on the priority of the timer
service/daemon task relative to other tasks in the system.

6.7.5. xTimerChangePeriod

This function changes the period of a timer that was previously created using the xTimerCreate() API
function. xTimerChangePeriod() can be called to change the period of an active or dormant state
timer.

[timers.h]

POrtBASE TYPE xTimerChangePeriod(xTimerHandle xTimer,
portTickType xNewPeriod,
portTickType xBlockTime) ;

Parameters:

xTimer [in] The handle of the timer that is having its period changed.

xNewPeriod [in] The new period for xTimer. Timer periods are specified in tick periods, so the
constant portTICK_RATE_MS can be used to convert a time that has been specified
in milliseconds. For example, if the timer must expire after 100 ticks, then
xNewPeriod should be set to 100. Alternatively, if the timer must expire after 500ms,
then xNewPeriod can be set to (500/portTICK_RATE _MS) provided
configTICK_RATE_HZ is less than or equal to 1000.

xBlockTime [in] Specifies the time, in ticks, that the calling task should be held in the Blocked
state to wait for the change period command to be successfully sent to the timer
command queue, should the queue already be full when xTimerChangePeriod() was
called.

Returns:

PortBASE_TYPE pdFAIL will be returned if the change period command could not be sent to the
timer command queue even after xBlockTime ticks had passed. pdPASS will be
returned if the command was successfully sent to the timer command queue.
When the command is actually processed will depend on the priority of the timer
service/daemon task relative to other tasks in the system.

Example:

/* This function assumes xTimer has already been created. If the timer
referenced by xTimer is already active when it is called, then the timer
is deleted. 1If the timer referenced by xTimer is not active when it is
called, then the period of the timer is set to 500ms and the timer is
started. */

void vAFunction(xTimerHandle xTimer)

{

if(xTimerIsTimerActive(xTimer) != pdFALSE)
/* or more simply and equivalently "if(xTimerIsTimerActive(xTimer))" */
{
/* xTimer is already active - delete it. */

xTimerDelete (xTimer);

}

else

Page 73 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

@ Advanced Card Systems Ltd.
Card & Reader Technologies

/* xTimer is not active, change its period to 500ms. This will also
cause the timer to start. Block for a maximum of 100 ticks if the
change period command cannot immediately be sent to the timer
command queue. */
if (xTimerChangePeriod(xTimer, 500 / portTICK RATE MS, 100) ==

PdPASS)
{
/* The command was successfully sent. */

}

else

{
/* The command could not be sent, even after waiting for 100 ticks
to pass. Take appropriate action here. */

}

6.7.6. xTimerDelete
This function deletes a timer that was previously created using the xTimerCreate() API function.

[timers.h]

POrtBASE TYPE xTimerDelete(xTimerHandle xTimer, portTickType xBlockTime);

Parameters:

xTimer [in] The handle of the timer being deleted.

xBlockTime [in] Specifies the time, in ticks, that the calling task should be held in the Blocked
state to wait for the delete command to be successfully sent to the timer command
queue, should the queue already be full when xTimerDelete() was called.

Returns:

POrtBASE TYPE pdFAIL will be returned if the delete command could not be sent to the timer
command queue even after xBlockTime ticks had passed. pdPASS will be
returned if the command was successfully sent to the timer command queue.
When the command is actually processed will depend on the priority of the timer
service/daemon task relative to other tasks in the system.

6.7.7. xTimerReset

This function re-starts a timer that was previously created using the xTimerCreate() API function. If
the timer had already been started and was already in the active state, then xTimerReset() will cause
the timer to re-evaluate its expiry time so that it is relative to when xTimerReset() was called. If the
timer was in the dormant state then xTimerReset() has equivalent functionality to the xTimerStart()
API function. Resetting a timer ensures the timer is in the active state. If the timer is not stopped,
deleted, or reset in the meantime, the callback function associated with the timer will get called 'n'
ticks after xTimerReset() was called, where 'n' is the timers defined period.

[timers.h]
POrtBASE TYPE xTimerReset (xTimerHandle xTimer, portTickType xBlockTime);

Parameters:

xTimer [in] The handle of the timer being reset/started/restarted.

Page 74 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.

Card & Reader Technologies

xBlockTime [in] Specifies the time, in ticks, that the calling task should be held in the Blocked
state to wait for the reset command to be successfully sent to the timer command
queue, should the queue already be full when xTimerReset() was called.

Returns:

POrtBASE_TYPE pdFAIL will be returned if the reset command could not be sent to the timer
command queue even after xBlockTime ticks had passed. pdPASS will be
returned if the command was successfully sent to the timer command queue.
When the command is actually processed will depend on the priority of the timer
service/daemon task relative to other tasks in the system, although the timers
expiry time is relative to when xTimerReset() is actually called.

Example:

/* When a key 1is pressed, an LCD back-light is switched on. If 5 seconds
pass

without a key being pressed, then the LCD back-light is switched off. 1In
this case, the timer is a one-shot timer. */

xTimerHandle xBacklightTimer = NULL;

/* The callback function assigned to the one-shot timer. In this case the
parameter is not used. */
void vBacklightTimerCallback(xTimerHandle pxTimer)
{
/* The timer expired, therefore 5 seconds must have passed since a key
was pressed. Switch off the LCD back-light. */
vSetBacklightsState (BACKLIGHT OFF);
}

/* The key press event handler. */
void vKeyPressEventHandler (char cKey)
{
/* Ensure the LCD back-light is on, then reset the timer that is
responsible for turning the back-light off after 5 seconds of
key inactivity. Wait 10 ticks for the command to be successfully sent
if it cannot be sent immediately. */
vSetBacklightState (BACKLIGHT ON);
if(xTimerReset (xBacklightTimer, 10) != pdPASS)
{
/* The reset command was not executed successfully. Take appropriate
action here. */

}

/* Perform the rest of the key processing here. */

}

void main(void)
{

long x;

/* Create then start the one-shot timer that is responsible for turning
the back-light off if no keys are pressed within a 5 second period. */
xBacklightTimer = xTimerCreate (

"BacklightTimer", /* Just a text name, not used by the kernel. */
(5000 / portTICK RATE MS), /* The timer period in ticks. */
pdFALSE, /* The timer is a one-shot timer. */

Page 75 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

aCs Advanced Card Systems Ltd.
Card & Reader Technologies

0, /* The id is not used by the callback so can
take any value. */
vBacklightTimerCallback /* The callback function that switches the
LCD back-light off. */
) ;

if(xBacklightTimer == NULL)
{

/* The timer was not created. */

}

else
{
/* Start the timer. No block time is specified, and even if one was
it would be ignored because the scheduler has not yet been
started. */
if(xTimerStart (xBacklightTimer, 0) != pdPASS)
{

/* The timer could not be set into the Active state. */
}
}

/*
Create tasks here.

*/

/* Starting the scheduler will start the timer running as it has already
been set into the active state. */
xTaskStartScheduler () ;

/* Should not reach here. */
for(;;)

}

6.7.8. pvTimerGetTimerlD

This function returns the ID assigned to the timer. IDs are assigned to timers using the pvTimer/D
parameter of the call to xTimerCreate() that was used to create the timer. If the same callback
function is assigned to multiple timers then the timer ID can be used within the callback function to
identify which timer actually expired.

[timers.h]

void *pvTimerGetTimerID(xTimerHandle xTimer);

Parameters:

xTimer [in] The timer being queried.

Returns:

void * The ID assigned to the timer being queried.

Page 76 of 76

ACR89U-A2 - Application Programming Interface info@acs.com.hk

Version 1.00 www.acs.com.hk

	Introduction
	Scope and Limitation
	Reference

	Compiler Independent Data Types
	Smart Card API Functions
	Firmware Version Records
	Hardware Code: HW-AA-BB-CC
	Production Firmware Code: XYYY

	Data Structures
	SCARD_MSG_TYPE

	Functions
	SCard_Manager_Msg_Receive
	SCard_Manager_Select Card
	SCard_Manager_CardOn
	SCard_Manager_CardOff
	SCard_Manager_SendBlock

	Reader API Functions
	Battery API Functions
	Data Structures
	Functions
	Battery_GetMilliVolt
	Battery_GetPercent
	Battery_WaitChargeStateChangeMsg

	Buzzer API Functions
	Data Structures
	Buzzer_ScriptDataType

	Functions
	Buzzer_Msg_SendScript
	Buzzer_Msg_IsPlaying

	Keypad API Functions
	Data Structures
	KeyStatusEnumType
	KeyInputEnumType
	Key_MessageDataType

	Functions
	Key_Port_IsAnyKeyDown
	Key_Msg_ReceiveKey
	Key_Msg_GetKeyPressing
	Key_Ctrl_FlushMsgBuffer
	Key_Ctrl_ScanLock
	Key_Ctrl_ScanUnlock
	Key_Ctrl_SetLongPressThreshold
	Key_Tim_GetKeyDownTime

	EEPROM API Functions
	Data Structures
	Functions
	EEPROM_Write
	EEPROM_Read

	Real-time Clock API Functions
	Data Structures
	Functions
	EXRTC_Write_Ram
	EXRTC_Read_Ram
	EXRTC_Write_Time
	EXRTC_Write_TimeBCD
	EXRTC_Read_Time
	EXRTC_Write_Date
	EXRTC_Write_DateBCD
	EXRTC_Read_Date

	LCD API Functions
	Data Structures
	Functions
	LCD_SetCursor
	LCD_GetCursor
	LCD_Display_ASCIIChar
	LCD_DisplayASCIIMessage
	LCD_ClearDisplay
	LCD_SetContrast
	LCD_SetBacklight
	LCD_Display_Cursor
	LCD_Clear_Cursor
	LCD_Display_Page
	LCD_DisplayGraphic
	LCD_DisplayOn
	LCD_DisplayDecimal
	LCD_DisplayHex
	LCD_DisplayHexN
	LCD_DisplayFloat
	LCD_DrawTitleBox

	Serial Flash API Functions
	Data Structures
	SFlash_EraseBlockType

	Functions
	SerialFlash_ReadDataBytes
	SerialFlash_Erase_Block
	SerialFlash_WriteDataBytes

	RS232 API Functions
	Data Structures
	ParityEnumType
	RS232_ParamDataType

	Functions
	RS232_Config
	RS232_OpenPort
	RS232_ClosePort
	RS232_ReceivedDataNumber
	RS232_Receive
	RS232_Send

	Miscellaneous I/O API Functions
	Data Structures
	IO_VirtualNameType
	IO_ActiveInactiveStateType

	Functions
	IO_ReadDigitalOutput
	IO_WriteDigitalOutput
	IO_WriteLEDOutput
	IO_ReadLEDOutput
	IO_SystemShutdown
	IO_SystemSleep
	IO_SystemRestart
	IO_GetSystemVersion

	RF Card API Functions (only for ACR89-CL version)
	Data Structures
	Functions
	RFIF_Sleep
	RFIF_Wakeup

	FreeRTOS API Functions
	Task Creation
	xTaskHandle
	xTaskCreate
	vTaskDelete

	Task Control
	vTaskDelay
	vTaskDelayUntil
	uxTaskPriorityGet
	vTaskPrioritySet
	vTaskSuspend
	vTaskResume

	Task Utilities
	xTaskGetCurrentTaskHandle
	xTaskGetTickCount
	xTaskGetSchedulerState
	uxTaskGetNumberOfTasks

	Kernel Control
	taskYIELD
	taskENTER_CRITICAL
	taskEXIT_CRITICAL
	vTaskSuspendAll
	xTaskResumeAll

	Queue Management
	uxQueueMessagesWaiting
	xQueueCreate
	vQueueDelete
	xQueueSend
	xQueueSendToBack
	xQueueSendToToFront
	xQueueReceive
	xQueuePeek

	Semaphore/Mutexes
	vSemaphoreCreateBinary
	xSemaphoreCreateCounting
	xSemaphoreCreateMutex
	xSemaphoreCreateRecursiveMutex
	xSemaphoreTake
	xSemaphoreTakeRecursive
	xSemaphoreGive
	xSemaphoreGiveRecursive

	Software Timers
	xTimerCreate
	xTimerIsTimerActive
	xTimerStart
	xTimerStop
	xTimerChangePeriod
	xTimerDelete
	xTimerReset
	pvTimerGetTimerID

